Prev. 100Electric Tension1 Electric Thermometer1 Electric Thermostat1 Electric Torpedo1 Electric Tower1 Electric Transmission of Energy1Electric Trumpet1 Electric Tube1 Electric Typewriter1 Electric Varnish1 Electric Welding1 Electric Whirl1 Electric Wind1 Electrical Aura1 Electrical Cements1 Electrical Classification of Elemen...1 Electrical Convection of Heat1 Electrical Death1 Electrical Efficiency1 Electrical hazard2 Electrical Rectification of Alcohol1 Electrical Reduction of Phosphorous1 Electrically Controlled Valve1 Electricity5 Electrics1 Electrification1 Electrification by Cleavage1 Electrification by Pressure1 Electrization1 Electro Diagnosis1 Electro- Gilding1 Electro- Plating1 Electro-biology1 Electro-capillarity1 Electrochemical cell1 Electro-chemical Equivalent1 Electro-chemical Equivalents1 Electro-chemical Series1 Electro–chemistry1 Electro-culture1 Electrode1 Electro-diagnosis1 Electro-dynamic Attraction andRepul...1 Electro-dynamic Rotation of Liquids1 Electro-dynamic. adj.1 Electro-dynamics1 Electrolier1 Electrolysis1 Electrolyte1 Electrolytic Analysis1 Electrolytic Cell1 Electrolytic Clock1 Electrolytic Conduction1 Electrolytic Convection2 Electrolytic Decomposition1 Electrolytic Deposit1 Electrolytic Gas1 Electrolytic Iron1 Electrolytic Resistance1 Electro-magnet1 Electro-magnetic Adherence1 Electro-magnetic Ammeter1 Electro-magnetic Attraction andRepu...1 Electro-magnetic Brake1 Electro-magnetic Clutch1 Electromagnetic coil1 Electro-magnetic Control1 Electro-magnetic Eye1 Electro-magnetic Field of Force1 Electro-magnetic Force1 Electro-magnetic Gun1 Electro-magnetic Induction2 Electro-magnetic Inertia1 Electro-magnetic Leakage1 Electro-magnetic Lines of Force1 Electro-magnetic Meter1 Electro-magnetic Mutual Induction1 Electro-magnetic Rotation of Liquid...1 Electro-magnetic Shunt1 Electro-magnetic Stress2 Electro-magnetic Theory of Light1 Electro-magnetic Unit of Energy1 Electro-magnetic Vibrator1 Electro-magnetic Waves1 Electro-magnetism1 Electromagnetism4 Electro-mechanical Bell1 Electro-mechanical Equivalent1 Electro-medical Baths1 Electro-metallurgy1 Electrometer1 Electrometer Gauge1 Electro-motive Force1 Electro-motive Force Curve1 Electro-motive Intensity1 Electro-motive Potential Difference1 Electro-motive Series1 Electro-motograph1 Electro-motor1 Electro-muscular Excitation1 Prev. 100

Electric Transmission of Energy

If an electric current passes through a conductor all its energy is expended in the full circuit. Part of the circuit may be an electrical generator that supplies energy as fast as expended. Part of the circuit may be a motor which absorbs part of the energy, the rest being expended in forcing a current through the connecting wires and through the generator. The electric energy in the generator and connecting wires is uselessly expended by conversion into heat. That in the motor in great part is utilized by conversion into mechanical energy which can do useful work. This represents the transmission of energy. Every electric current system represents this operation, but the term is usually restricted to the transmission of comparatively large quantities of energy.

A typical installation might be represented thus. At a waterfall a turbine water wheel is established which drives a dynamo. From the dynamo wires are carried to a distant factory, where a motor or several motors are established, which receive current from the dynamo and drive the machinery. The same current, if there is enough energy, may be used for running lamps or electroplating. As electric energy (see Energy) is measured by the product of potential difference by quantity, a very small wire will suffice for the transmission of a small current at a high potential, giving a comparatively large quantity of energy. It is calculated that the energy of Niagara Falls could be transmitted through a circuit of iron telegraph wire a distance of over 1,000 miles, but a potential difference of 135,000,000 volts would be required, something quite impossible to obtain or manage.

[Transcriber's note: Contemporary long distance power transmission lines use 115,000 to 1,200,000 volts. At higher voltages corona discharges (arcing) create unacceptable losses.]