Germ plasm

The Continuity of the Germ-Plasm As the Foundation of A Theory of Heredity


When we see that, in the higher organisms, the smallest structural details, and the most minute peculiarities of bodily and mental disposition, are transmitted from one generation to another; when we find in all species of plants and animals a thousand characteristic peculiarities of structure continued unchanged through long series of generations; when we even see them in many cases unchanged throughout whole geological periods; we very naturally ask for the causes of such a striking phenomenon: and enquire how it is that such facts become possible, how it is that the individual is able to transmit its structural features to its offspring with such precision. And the immediate answer to such a question must be given in the following terms:—‘A single cell out of the millions of diversely differentiated cells which compose the body, becomes specialized as a sexual cell; it is thrown off from the organism and is capable of reproducing all the peculiarities of the parent body, in the new individual which springs from it by cell-division and the complex process of differentiation.' Then the more precise question follows: ‘How is it that such a single cell can reproduce the tout ensemble  of the parent with all the faithfulness of a portrait?'

The answer is extremely difficult; and no one of the many attempts to solve the problem can be looked upon as satisfactory; no one of them can be regarded as even the beginning of a solution or as a secure foundation from which a complete solution may be expected in the future. Neither Häckel's [94], ‘Perigenesis of the Plastidule,' nor Darwin's [95] ‘Pangenesis,' can be regarded as such a beginning. The former hypothesis does not really treat of that part of the problem which is here placed in the foreground, viz. the explanation of the fact that the tendencies of heredity are present in single cells, but it is rather concerned with the question as to the manner in which it is possible to conceive the transmission of a certain tendency of development into the sexual cell, and ultimately into the organism arising from it. The same may be said of the hypothesis of His [96], who, like Häckel, regards heredity as the transmission of certain kinds of motion. On the other hand, it must be conceded that Darwin's hypothesis goes to the very root of the question, but he is content to give, as it were, a provisional or purely formal solution, which, as he himself says, does not claim to afford insight into the real phenomena, but only to give us the opportunity of looking at all the facts of heredity from a common standpoint. It has achieved this end, and I believe it has unconsciously done more, in that the thoroughly logical application of its principles has shown that the real causes of heredity cannot lie in the formation of gemmules or in any allied phenomena. The improbabilities to which any such theory would lead are so great that we can affirm with certainty that its details cannot accord with existing facts. Furthermore, Brooks'[97] well-considered and brilliant attempt to modify the theory of Pangenesis, cannot escape the reproach that it is based upon possibilities, which one might certainly describe as improbabilities. But although I am of opinion that the whole foundation of the theory of Pangenesis, however it may be modified, must be abandoned, I think, nevertheless, its author deserves great credit, and that its production has been one of those indirect roads along which science has been compelled to travel in order to arrive at the truth. Pangenesis is a modern revival of the oldest theory of heredity, that of Democritus, according to which the sperm is secreted from all parts of the body of both sexes during copulation, and is animated by a bodily force; according to this theory also, the sperm from each part of the body reproduces the same part [98].

If, according to the received physiological and morphological ideas of the day, it is impossible to imagine that gemmules produced by each cell of the organism are at all times to be found in all parts of the body, and furthermore that these gemmules are collected in the sexual cells, which are then able to again reproduce in a certain order each separate cell of the organism, so that each sexual cell is capable of developing into the likeness of the parent body; if all this is inconceivable, we must enquire for some other way in which we can arrive at a foundation for the true understanding of heredity. My present task is not to deal with the whole question of heredity, but only with the single although fundamental question—‘How is it that a single cell of the body can contain within itself all the hereditary tendencies of the whole organism?' I am here leaving out of account the further question as to the forces and the mechanism by which these tendencies are developed in the building-up of the organism. On this account I abstain from considering at present the views of Nägeli, for as will be shown later on, they only slightly touch this fundamental question, although they may certainly claim to be of the highest importance with respect to the further question alluded to above.

Now if it is impossible for the germ-cell to be, as it were, an extract of the whole body, and for all the cells of the organism to despatch small particles to the germ-cells, from which the latter derive their power of heredity; then there remain, as it seems to me, only two other possible, physiologically conceivable, theories as to the origin of germ-cells, manifesting such powers as we know they possess. Either the substance of the parent germ-cell is capable of undergoing a series of changes which, after the building-up of a new individual, leads back again to identical germ-cells; or the germ-cells are not derived at all, as far as their essential and characteristic substance is concerned, from the body of the individual, but they are derived directly from the parent germ-cell.

I believe that the latter view is the true one: I have expounded it for a number of years, and have attempted to defend it, and to work out its further details in various publications. I propose to call it the theory of ‘The Continuity of the Germ-plasm,' for it is founded upon the idea that heredity is brought about by the transference from one generation to another, of a substance with a definite chemical, and above all, molecular constitution. I have called this substance ‘germ-plasm,' and have assumed that it possesses a highly complex structure, conferring upon it the power of developing into a complex organism. I have attempted to explain heredity by supposing that in each ontogeny, a part of the specific germ-plasm contained in the parent egg-cell is not used up in the construction of the body of the offspring, but is reserved unchanged for the formation of the germ-cells of the following generation.

It is clear that this view of the origin of germ-cells explains the phenomena of heredity very simply, inasmuch as heredity becomes thus a question of growth and of assimilation,—the most fundamental of all vital phenomena. If the germ-cells of successive generations are directly continuous, and thus only form, as it were, different parts of the same substance, it follows that these cells must, or at any rate may, possess the same molecular constitution, and that they would therefore pass through exactly the same stages under certain conditions of development, and would form the same final product. The hypothesis of the continuity of the germ-plasm gives an identical starting-point to each successive generation, and thus explains how it is that an identical product arises from all of them. In other words, the hypothesis explains heredity as part of the underlying problems of assimilation and of the causes which act directly during ontogeny: it therefore builds a foundation from which the explanation of these phenomena can be attempted.

It is true that this theory also meets with difficulties, for it seems to be unable to do justice to a certain class of phenomena, viz. the transmission of so-called acquired characters. I therefore gave immediate and special attention to this point in my first publication on heredity [99], and I believe that I have shown that the hypothesis of the transmission of acquired characters—up to that time generally accepted—is, to say the least, very far from being proved, and that entire classes of facts which have been interpreted under this hypothesis may be quite as well interpreted otherwise, while in many cases they must be explained differently. I have shown that there is no ascertained fact, which, at least up to the present time, remains in irrevocable conflict with the hypothesis of the continuity of the germ-plasm; and I do not know any reason why I should modify this opinion to-day, for I have not heard of any objection which appears to be feasible. E. Roth [100] has objected that in pathology we everywhere meet with the fact that acquired local disease may be transmitted to the offspring as a predisposition; but all such cases are exposed to the serious criticism that the very point that first needs to be placed on a secure footing is incapable of proof, viz. the hypothesis that the causes which in each particular case led to the predisposition, were really acquired. It is not my intention, on the present occasion, to enter fully into the question of acquired characters; I hope to be able to consider the subject in greater detail at a future date. But in the meantime I should wish to point out that we ought, above all, to be clear as to what we really mean by the expression ‘acquired character.' An organism cannot acquire anything unless it already possesses the predisposition to acquire it: acquired characters are therefore no more than local or sometimes general variations which arise under the stimulus provided by certain external influences. If by the long-continued handling of a rifle, the so-called ‘Exercierknochen' (a bony growth caused by the pressure of the weapon in drilling) is developed, such a result depends upon the fact that the bone in question, like every other bone, contains within itself a predisposition to react upon certain mechanical stimuli, by growth in a certain direction and to a certain extent. The predisposition towards an ‘Exercierknochen' is therefore already present, or else the growth could not be formed; and the same reasoning applies to all other ‘acquired characters.'

Nothing can arise in an organism unless the predisposition to it is pre-existent, for every acquired character is simply the reaction of the organism upon a certain stimulus. Hence I should never have thought of asserting that predispositions cannot be transmitted, as E. Roth appears to believe. For instance, I freely admit that the predisposition to an ‘Exercierknochen' varies, and that a strongly marked predisposition may be transmitted from father to son, in the form of bony tissue with a more susceptible constitution. But I should deny that the son could develope an ‘Exercierknochen' without having drilled, or that, after having drilled, he could develope it more easily than his father, on account of the drilling through which the latter first acquired it. I believe that this is as impossible as that the leaf of an oak should produce a gall, without having been pierced by a gall-producing insect, as a result of the thousands of antecedent generations of oaks which have been pierced by such insects, and have thus ‘acquired' the power of producing galls. I am also far from asserting that the germ-plasm—which, as I hold, is transmitted as the basis of heredity from one generation to another—is absolutely unchangeable or totally uninfluenced by forces residing in the organism within which it is transformed into germ-cells. I am also compelled to admit that it is conceivable that organisms may exert a modifying influence upon their germ-cells, and even that such a process is to a certain extent inevitable. The nutrition and growth of the individual must exercise some influence upon its germ-cells; but in the first place this influence must be extremely slight, and in the second place it cannot act in the manner in which it is usually assumed that it takes place. A change of growth at the periphery of an organism, as in the case of an ‘Exercierknochen,' can never cause such a change in the molecular structure of the germ-plasm as would augment the predisposition to an ‘Exercierknochen,' so that the son would inherit an increased susceptibility of the bony tissue or even of the particular bone in question. But any change produced will result from the reaction of the germ-cell upon changes of nutrition caused by alteration in growth at the periphery, leading to some change in the size, number, or arrangement of its molecular units. In the present state of our knowledge there is reason for doubting whether such reaction can occur at all; but, if it can take place, at all events the quality of the change in the germ-plasm can have nothing to do with the quality of the acquired character, but only with the way in which the general nutrition is influenced by the latter. In the case of the ‘Exercierknochen' there would be practically no change in the general nutrition, but if such a bony growth could reach the size of a carcinoma, it is conceivable that a disturbance of the general nutrition of the body might ensue. Certain experiments on plants—in which Nägeli showed that they can be submitted to strongly varied conditions of nutrition for several generations, without the production of any visible hereditary change—show that the influence of nutrition upon the germ-cells must be very slight, and that it may possibly leave the molecular structure of the germ-plasm altogether untouched. This conclusion is also supported by comparing the uncertainty of these results with the remarkable precision with which heredity acts in the case of those characters which are known to be transmitted. In fact, up to the present time, it has never been proved that any changes in general nutrition can modify the molecular structure of the germ-plasm, and far less has it been rendered by any means probable that the germ-cells can be affected by acquired changes which have no influence on general nutrition. If we consider that each so-called predisposition (that is, a power of reacting upon a certain stimulus in a certain way, possessed by any organism or by one of its parts) must be innate, and further that each acquired character is only the predisposed reaction of some part of an organism upon some external influence; then we must admit that only one of the causes which produce any acquired character can be transmitted, the one which was present before the character itself appeared, viz. the predisposition; and we must further admit that the latter arises from the germ, and that it is quite immaterial to the following generation whether such predisposition comes into operation or not. The continuity of the germ-plasm is amply sufficient to account for such a phenomenon, and I do not believe that any objection to my hypothesis, founded upon the actually observed phenomena of heredity, will be found to hold. If it be accepted, many facts will appear in a light different from that which has been cast upon them by the hypothesis which has been hitherto received,—a hypothesis which assumes that the organism produces germ-cells afresh, again and again, and that it produces them entirely from its own substance. Under the former theory the germ-cells are no longer looked upon as the product of the parent's body, at least as far as their essential part—the specific germ-plasm—is concerned: they are rather considered as something which is to be placed in contrast with the tout ensemble  of the cells which make up the parent's body, and the germ-cells of succeeding generations stand in a similar relation to one another as a series of generations of unicellular organisms, arising by a continued process of cell-division. It is true that in most cases the generations of germ-cells do not arise immediately from one another as complete cells, but only as minute particles of germ-plasm. This latter substance, however, forms the foundation of the germ-cells of the next generation, and stamps them with their specific character. Previous to the publication of my theory, G. Jäger [101], and later M. Nussbaum [102], have expressed ideas upon heredity which come very near to my own [103]. Both of these writers started with the hypothesis that there must be a direct connexion between the germ-cells of succeeding generations, and they tried to establish such a continuity by supposing that the germ-cells of the offspring are separated from the parent germ-cell before the beginning of embryonic development, or at least before any histological differentiation has taken place. In this form their suggestion cannot be maintained, for it is in conflict with numerous facts. A continuity of the germ-cells  does not now take place, except in very rare instances; but this fact does not prevent us from adopting a theory of the continuity of the germ-plasm, in favour of which much weighty evidence can be brought forward. In the following pages I shall attempt to develope further the theory of which I have just given a short account, to defend it against any objections which have been brought forward, and to draw from it new conclusions which may perhaps enable us more thoroughly to appreciate facts which are known, but imperfectly understood. It seems to me that this theory of the continuity of the germ-plasm deserves at least to be examined in all its details, for it is the simplest theory upon the subject, and the one which is most obviously suggested by the facts of the case, and we shall not be justified in forsaking it for a more complex theory until proof that it can be no longer maintained is forthcoming. It does not presuppose anything except facts which can be observed at any moment, although they may not be understood,—such as assimilation, or the development of like organisms from like germs; while every other theory of heredity is founded on hypotheses which cannot be proved. It is nevertheless possible that continuity of the germ-plasm does not exist in the manner in which I imagine that it takes place, for no one can at present decide whether all the ascertained facts agree with and can be explained by it. Moreover the ceaseless activity of research brings to light new facts every day, and I am far from maintaining that my theory may not be disproved by some of these. But even if it should have to be abandoned at a later period, it seems to me that, at the present time, it is a necessary stage in the advancement of our knowledge, and one which must be brought forward and passed through, whether it prove right or wrong, in the future. In this spirit I offer the following considerations, and it is in this spirit that I should wish them to be received.

I. The Germ-plasm

I must first define precisely the exact meaning of the term germ-plasm.

In my previous writings in which the subject has been alluded to, I have simply spoken of germ-plasm without indicating more precisely the part of the cell in which we may expect to find this substance—the bearer of the characteristic nature of the species and of the individual. In the first place such a course was sufficient for my immediate purpose, and in the second place the number of ascertained facts appeared to be insufficient to justify a more exact definition. I imagined that the germ-plasm was that part of a germ-cell of which the chemical and physical properties—including the molecular structure—enable the cell to become, under appropriate conditions, a new individual of the same species. I therefore believed it to be some such substance as Nägeli [104], shortly afterwards, called idioplasm, and of which he attempted, in an admirable manner, to give us a clear understanding. Even at that time one might have ventured to suggest that the organized substance of the nucleus is in all probability the bearer of the phenomena of heredity, but it was impossible to speak upon this point with any degree of certainty. O. Hertwig [105] and Fol [106] had shown that the process of fertilization is attended by a conjugation of nuclei, and Hertwig had even then distinctly said that fertilization generally depends upon the fusion of two nuclei; but the possibility of the co-operation of the substance of the two germ-cells could not be excluded, for in all the observed cases the sperm-cell was very small and had the form of a spermatozoon, so that the amount of its cell-body, if there is any, coalescing with the female cell, could not be distinctly seen, nor was it possible to determine the manner in which this coalescence took place. Furthermore, it was for some time very doubtful whether the spermatozoon really contained true nuclear substance, and even in 1879 Fol was forced to the conclusion that these bodies consist of cell-substance alone. In the following year my account of the sperm-cells of Daphnidae  followed, and this should have removed every doubt as to the cellular nature of the sperm-cells and as to their possession of an entirely normal nucleus, if only the authorities upon the subject had paid more attention to these statements [107]. In the same year (1880) Balfour summed up the facts in the following manner—‘The act of impregnation may be described as the fusion of the ovum and spermatozoon, and the most important feature in this act appears to be the fusion of a male and female nucleus [108].' It is true that Calberla had already observed in Petromyzon, that the tail of the spermatozoon does not penetrate into the egg, but remains in the micropyle; but on the other hand the head and part of the ‘middle-piece' which effect fertilization, certainly contain a small fraction of the cell-body in addition to the nuclear substance, and although the amount of the former which thus enters the egg must be very small, it might nevertheless be amply sufficient to transmit the tendencies of heredity. Nägeli and Pflüger rightly asserted, at a later date, that the amount of the substance which forms the basis of heredity is necessarily very small, for the fact that hereditary tendencies are as strong on the paternal as on the maternal side, forces us to assume that the amount of this substance is nearly equal in both male and female germ-cells. Although I had not published anything upon the point, I was myself inclined to ascribe considerable importance to the cell-substance in the process of fertilization; and I had been especially led to adopt this view because my investigations upon Daphnidae  had shown that an animal produces large sperm-cells with an immense cell-body whenever the economy of its organism permits. All Daphnidae  in which internal fertilization takes place (in which the sperm-cells are directly discharged upon the unfertilized egg), produce a small number of such large sperm-cells (SidaPolyphemusBythotrephes ); while all species with external fertilization (DaphnidaeLynceinae ) produce very small sperm-cells in enormous numbers, thus making up for the immense chances against any single cell being able to reach an egg. Hence the smaller the chances of any single sperm-cell being successful, the larger is the number of such cells produced, and a direct result of this increase in number is a diminution in size. But why should the sperm-cells remain or become so large in the species in which fertilization is internal? The idea suggests itself that the species in this way gains some advantage, which must be given up in the other cases; although such advantage might consist in assisting the development of the fertilized ovum and not in any increase of the true fertilizing substance. At the present time we are indeed disposed to recognize this advantage in still more unimportant matters, but at that time the ascertained facts did not justify us in the assertion that fertilization is a mere fusion of nuclei, and M. Nussbaum [109] quite correctly expressed the state of our knowledge when he said that the act of fertilization consisted in ‘the union of identical parts of two homologous cells.'

Pflüger's discovery of the ‘isotropism' of the ovum was the first fact which distinctly pointed to the conclusion that the bodies of the germ-cells have no share in the transmission of hereditary tendencies. He showed that segmentation can be started in different parts of the body of the egg, if the latter be permanently removed from its natural position. This discovery constituted an important proof that the body of the egg consists of a uniform substance, and that certain parts or organs of the embryo cannot be potentially contained in certain parts of the egg, so that they can only arise from these respective parts and from no others. Pflüger was mistaken in the further interpretation, from which he concluded that the fertilized ovum has no essential relation to the organization of the animal subsequently formed by it, and that it is only the recurrence of the same external conditions which causes the germ-cell to develope always in the same manner. The force of gravity was the first factor, which, as Pflüger thought, determined the building up of the embryo: but he overlooked the fact that isotropism can only be referred to the body of the egg, and that besides this cell-body there is also a nucleus present, from which it was at least possible that regulative influences might emanate. Upon this point Born [110] first showed that the position of the nucleus is changed in eggs which are thus placed in unnatural conditions, and he proved that the nucleus must contain a principle which in the first place directs the formation of the embryo. Roux [111] further showed that, even when the effect of gravity is compensated, the development is continued unchanged, and he therefore concluded that the fertilized egg contains within itself all the forces necessary for normal development. Finally, O. Hertwig [112] proved from observations on the eggs of sea-urchins, that at any rate in these animals, gravity has no directive influence upon segmentation, but that the position of the first nuclear spindle decides the direction which will be taken by the first divisional plane of segmentation. These observations were however still insufficient to prove that fertilization is nothing more than the fusion of nuclei [113].

A further and more important step was taken when E. van Beneden [114] observed the process of fertilization in Ascaris megalocephala. Like the investigations of Nussbaum [115] upon the same subject, published at a rather earlier date, van Beneden's observations did not altogether exclude the possibility of the participation of the body of the sperm-cell in the real process of fertilization; still the fact that the nuclei of the egg-cell and the sperm-cell do not coalesce irregularly, but that their loops are placed regularly opposite one another in pairs and thus form one new nucleus (the first segmentation nucleus), distinctly pointed to the conclusion that the nuclear substance is the sole bearer of hereditary tendencies—that in fact fertilization depends upon the coalescence of nuclei. Van Beneden himself did not indeed arrive at these conclusions: he was prepossessed with the idea that fertilization depends upon the union of two sexually differentiated nuclei, or rather half-nuclei—the male and female pronuclei. He considered that only in this way could a single complete nucleus be formed, a nucleus which must of course be hermaphrodite, and he believed that the essential cause of further development lies in the fact that, at each successive division of nuclei and cells, this hermaphrodite nature of the nucleus is maintained by the longitudinal division of the loops of each mother-nucleus, causing a uniform distribution of the male and female loops in both daughter-nuclei.

But van Beneden undoubtedly deserves great credit for having constructed the foundation upon which a scientific theory of heredity could be built. It was only necessary to replace the terms male and female pronuclei, by the terms nuclear substance of the male and female parents, in order to gain a starting-point from which further advance became possible. This step was taken by Strasburger, who at the same time brought forward an instance in which the nucleus only of the male germ-cell (to the exclusion of its cell-body) reaches the egg-cell. He succeeded in explaining the process of fertilization in Phanerogams, which had been for a long time involved in obscurity, for he proved that the nucleus of the sperm-cell (the pollen-tube) enters the embryo-sac and fuses with the nucleus of the egg-cell: at the same time he came to the conclusion that the body of the sperm-cell does not pass into the embryo-sac, so that in this case fertilization can only depend upon the fusion of nuclei [116].

Thus the nuclear substance must be the sole bearer of hereditary tendencies, and the facts ascertained by van Beneden in the case of Ascaris  plainly show that the nuclear substance must not only contain the tendencies of growth of the parents, but also those of a very large number of ancestors. Each of the two nuclei which unite in fertilization must contain the germ-nucleoplasm of both parents, and this latter nucleoplasm once contained and still contains the germ-nucleoplasm of the grandparents as well as that of all previous generations. It is obvious that the nucleoplasm of each antecedent generation must be represented in any germ-nucleus in an amount which becomes less as the number of intervening generations becomes greater; and the proportion can be calculated after the manner in which breeders, when crossing races, determine the proportion of pure blood which is contained in any of the descendants. Thus while the germ-plasm of the father or mother constitutes half the nucleus of any fertilized ovum, that of a grandparent only forms a quarter, and that of the tenth generation backwards only 1/1024, and so on. The latter can, nevertheless, exercise influence over the development of the offspring, for the phenomena of atavism show that the germ-plasm of very remote ancestors can occasionally make itself felt, in the sudden reappearance of long-lost characters. Although we are unable to give a detailed account of the way in which atavism happens, and of the circumstances under which it takes place, we are at least able to understand how it becomes possible; for even a very minute trace of a specific germ-plasm possesses the definite tendency to build up a certain organism, and will develope this tendency as soon as its nutrition is, for some reason, favoured above that of the other kinds of germ-plasm present in the nucleus. Under these circumstances it will increase more rapidly than the other kinds, and it is readily conceivable that a preponderance in the quantity of one kind of nucleoplasm may determine its influence upon the cell-body.

Strasburger—supported by van Beneden's observations, but in opposition to the opinions of the latter—had already explained, in a manner similar to that described above, the process by which the hereditary transmission of certain characters takes place, and to this extent our opinions coincide. The nature of heredity is based upon the transmission of nuclear substance with a specific molecular constitution. This substance is the specific nucleoplasm of the germ-cell, to which I have given the name of germ-plasm.

O. Hertwig [117] has also come to the same conclusion: at an earlier date he had looked upon the coalescence of nuclei as the most essential feature in the process of fertilization. He now believes that this former opinion has been confirmed by the recent discoveries which have been shortly described above.

Although I entirely agree with Hertwig, as far as the main question is concerned, I cannot share his opinions when he identifies Nägeli's idioplasm with the nucleoplasm of the germ-cell. Nägeli's idioplasm certainly includes the germ-plasm, if I may retain this expression for the sake of brevity. Nägeli in forming his hypothesis did indeed start with the germ-cells, but his idioplasm not only represents the nucleoplasm of the germ-cells, but also that of all the other cells of the organism; all these nucleoplasms taken together constitute Nägeli's idioplasm. According to Nägeli, the idioplasm forms a network which extends through the whole body, and represents the specific molecular basis which determines its nature. Although this latter suggestion—the general part of his theory—is certainly valid, and although it is of great importance to have originated the idea of idioplasm in this general sense, in contrast to the somato-plasm (‘Nährplasma'), it is nevertheless true that we are not justified in retaining the details of his theory.

In the first place the idioplasm does not form a directly continuous network throughout the entire body; and, secondly, the whole organism is not penetrated by a single substance of homogeneous constitution, but each special kind of cell must contain the specific idioplasm or nucleoplasm which determines its nature. There are therefore in each organism a multitude of different kinds of idioplasm. Thus we should be quite justified in generally speaking of Nägeli's idioplasm as nucleoplasm, and vice versa.

It is perfectly certain that the idioplasm cannot form a continuous network through the whole organism, if it is seated in the nucleus and not in the cell-body. Even if the bodies of cells are everywhere connected by fine processes (as has been proved in animals by Leydig and Heitzmann, and in plants by various botanists), they do not form a network of idioplasm but of somato-plasm; a substance which, according to Nägeli, stands in marked contrast to idioplasm. Strasburger has indeed already spoken of a ‘cyto-idioplasm,' and it is certainly obvious that the cell-body often possesses a specific character, but we must in all cases assume that such a character is impressed upon it by the influence of the nucleus, or, in other words, that the direction in which the cell-substance is differentiated in the course of development is determined by the quality of its nuclear substance. So far, therefore, the determining nuclear substance corresponds to the idioplasm alone, while the substance of the cell-body must be identified with the somato-plasm (‘Nährplasma') of Nägeli. At all events, in practice, it will be well to restrict the term idioplasm to the regulative nuclear substance alone, if we desire to retain the well-chosen terms of Nägeli's theory.

But the second part of Nägeli's theory of the idioplasm is also untenable. It is impossible that this substance can have the same constitution everywhere in the organism and during every stage of its ontogeny. If this were so, how could the idioplasm effect the great differences which obtain in the formation of the various parts of the organism? In some passages of his work Nägeli seems to express the same opinion; e. g. on page 31 he says, ‘It would be practicable to regard—although only in a metaphorical sense—the idioplasms of the different cells of an individual as themselves different, inasmuch as they possess specific powers of production: we should thus include among these idioplasms all the conditions of the organism which bring about the display of specific activity on the part of cells.' It can be clearly seen from the passages immediately preceding and succeeding the above-quoted sentence, that Nägeli, in speaking of these changes in the idioplasm, does not refer to material, but only to dynamical changes. On page 53 he lays special stress upon the statement that ‘the idioplasm during its growth retains its specific constitution everywhere throughout the organism,' and it is only ‘within these fixed structural limits that it changes its conditions of tension and movement, and thus alters the forms of growth and activity which are possible at each time and place.' Against such an interpretationweighty objections can be raised. At present I will only mention that the meaning of the phrase ‘conditions of tension and movement' ought to be made clear, and that we ought to be informed how it is that mere differences in tension can produce as many different effects as could have been produced by differences of constitution. If any one were to assert that in Daphnidae, or in any other forms which produce two kinds of eggs, the power of developing only after a period of rest, possessed by the winter-eggs, is based upon the fact that their idioplasm is identical with that of the summer-eggs, but is in another condition of tension, I should think such a hypothesis would be well worth consideration, for the animals which arise from the winter-eggs are identical with those produced in summer: the idioplasm which caused their formation must therefore be identical in its constitution; and can only differ in the two cases, as water differs from ice. But the case is quite otherwise in the stages of ontogeny. How many different conditions of tension ought to be possessed by one and the same idioplasm in order to correspond to the thousand different structures and differentiations of cells in one of the higher organisms? In fact it would be hardly possible to form even an approximate conception of an explanation based upon mere ‘conditions of tensions and movement.' But, furthermore, difference in effect should correspond, at any rate to some extent, with difference in cause: thus the idioplasm of a muscle-cell ought to differ more from that of a nerve-cell and of a digestive-cell in the same individual, than the idioplasm of the germ-cell of one individual differs from that of other individuals of the same species; and yet, according to Nägeli, the latter small difference in the effect is supposed to be due to difference of quality in the cause—the idioplasm, while the former fundamental difference in the histological differentiation of cells is supposed to follow from mere difference ‘of tension and movement.'

Nägeli's hypothesis appears to be self-contradictory; for, although its author recognizes the truth of the fundamental law of development, and explains the stages of ontogeny as an abbreviated recapitulation of phyletic stages, he nevertheless explains the latter by a different principle from that which he employs to explain the former. According to Nägeli, the stages of phylogeny are based upon true qualitative differences in the idioplasm: the germ-plasm of a worm is qualitatively different from that of Amphioxus, a frog, or a mammal. But if such phyletic stages occur crowded together in the ontogeny of a single species, they are said to be based upon different ‘conditions of tension and movement' of one and the same idioplasm! It seems to me to be necessary to conclude that if the idioplasm, in the course of phyletic development, undergoes any alteration in specific constitution, such alterations must also take place in ontogeny; so far at least as the phyletic stages are repeated. Either the whole phyletic development is based upon different ‘conditions of tension and movement,' or if this—as I believe—is impossible, the stages of ontogeny must be based upon qualitative alterations in the idioplasm.

Involuntarily the question arises—how is it that such an acute thinker fails to perceive this contradiction? But the answer is not far to seek, and Nägeli himself indicates it when he adds these words to the sentence quoted above: ‘It follows therefore that if a cell is detached as a germ-cell in any stage of ontogenetic development, and from any part of the organism, such a cell will contain all the hereditary tendencies of the parent individual.' In other words, if we are restricted to different ‘conditions of tension and movement' as an explanation, it seems to follow as a matter of course that the idioplasm can re-assume its original condition, and therefore that the idioplasm of any cell in the body can again become the idioplasm of the germ-cell; for this to take place it is only necessary that the greater tension should become the less, or vice versa. But if we admit a real change in constitution, then the backward development of the idioplasm of the cells of the body into germ-cells appears to be very far from a matter of course, and he who assumes it must bring forward weighty reasons. Nägeli does not produce such reasons, but considers the metamorphosis of the idioplasm in ontogeny as mere differences in the ‘conditions of tension and movement.' This phrase covers the weak part of his theory; and I look upon it as a valuable proof that Nägeli has also felt that the phenomena of heredity can only find their explanation in the hypothesis of the continuity of the germ-plasm; for his phrase is only capable of obscuring the question as to how the idioplasm of the cells of the body can be re-transformed into the idioplasm of germ-cells.

I am of the opinion that the idioplasm cannot be re-transformed, and I have defended this opinion for some years past [118], although I have hitherto laid especial stress on the positive aspect of the question, viz. on the continuity of the germ-plasm. I have attempted to prove that the germ-cells of an organism derive their essential nature from the fact that the germ-plasm of each generation is carried over into that which succeeds it; and I have tried to show that during the development of an egg into an animal, a part of the germ-substance—although only a minute part—passes over unchanged into the organism which is undergoing development, and that this part represents the basis from which future germ-cells arise. In this way it is to a certain extent possible to conceive how it is that the complex molecular structure of the germ-plasm can be retained unchanged, even in its most minute details, through a long series of generations.

But how would this be possible if the germ-plasm were formed anew in each individual by the transformation of somatic idioplasm? And yet if we reject the ‘continuity of the germ-plasm' we are compelled to adopt this latter hypothesis concerning its origin. It is the hypothesis adopted by Strasburger, and we have therefore to consider how the subject presents itself from his point of view.

I entirely agree with Strasburger when he says, ‘The specific qualities of organisms are based upon nuclei'; and I further agree with him in many of his ideas as to the relation between the nucleus and cell-body: ‘Molecular stimuli proceed from the nucleus into the surrounding cytoplasm; stimuli which, on the one hand, control the phenomena of assimilation in the cell, and, on the other hand, give to the growth of the cytoplasm, which depends upon nutrition, a certain character peculiar to the species.' ‘The nutritive cytoplasm assimilates, while the nucleus controls the assimilation, and hence the substances assimilated possess a certain constitution and nourish in a certain manner the cyto-idioplasm and the nuclear idioplasm. In this way the cytoplasm takes part in the phenomena of construction, upon which the specific form of the organism depends. This constructive activity of the cyto-idioplasm depends upon the regulative influence of the nuclei.' The nuclei therefore ‘determine the specific direction in which an organism developes.'

The opinion—derived from the recent study of the phenomena of fertilization—that the nucleus impresses its specific character upon the cell, has received conclusive and important confirmation in the experiments upon the regeneration of Infusoria, conducted simultaneously by M. Nussbaum [119] at Bonn, and by A. Gruber [120] at Freiburg. Nussbaum's statement that an artificially separated portion of a Paramaecium, which does not contain any nuclear substance, immediately dies, must not be accepted as of general application, for Gruber has kept similar fragments of other Infusoria alive for several days. Moreover, Gruber had previously shown that individual Protozoa occur, which live in a normal manner, and are yet without a nucleus, although this structure is present in other individuals of the same species. But the meaning of the nucleus is made clear by the fact, published by Gruber, that such artificially separated fragments of Infusoria are incapable of regeneration, while on the other hand those fragments which contain nuclei always regenerate. It is therefore only under the influence of the nucleus that the cell substance re-developes into the full type of the species. In adopting the view that the nucleus is the factor which determines the specific nature of the cell, we stand on a firm foundation upon which we can build with security.

If therefore the first segmentation nucleus contains, in its molecular structure, the whole of the inherited tendencies of development, it must follow that during segmentation and subsequent cell-division, the nucleoplasm will enter upon definite and varied changes which must cause the differences appearing in the cells which are produced; for identical cell-bodies depend, ceteris paribus, upon identical nucleoplasm, and conversely different cells depend upon differences in the nucleoplasm. The fact that the embryo grows more strongly in one direction than in another, that its cell-layers are of different nature and are ultimately differentiated into various organs and tissues,—forces us to accept the conclusion that the nuclear substance has also been changed in nature, and that such changes take place during ontogenetic development in a regular and definite manner. This view is also held by Strasburger, and it must be the opinion of all who seek to derive the development of inherited tendencies from the molecular structure of the germ-plasm, instead of from preformed gemmules.

We are thus led to the important question as to the forces by which the determining substance or nucleoplasm is changed, and as to the manner in which it changes during the course of ontogeny, and on the answer to this question our further conclusions must depend. The simplest hypothesis would be to suppose that, at each division of the nucleus, its specific substance divides into two halves of unequal quality, so that the cell-bodies would also be transformed; for we have seen that the character of a cell is determined by that of its nucleus. Thus in any Metazoon the first two segmentation spheres would be transformed in such a manner that one only contained the hereditary tendencies of the endoderm and the other those of the ectoderm, and therefore, at a later stage, the cells of the endoderm would arise from the one and those of the ectoderm from the other; and this is actually known to occur. In the course of further division the nucleoplasm of the first ectoderm cell would again divide unequally, e.g. into the nucleoplasm containing the hereditary tendencies of the nervous system, and into that containing the tendencies of the external skin. But even then, the end of the unequal division of nuclei would not have been nearly reached; for, in the formation of the nervous system, the nuclear substance which contains the hereditary tendencies of the sense-organs, would, in the course of further cell-division, be separated from that which contains the tendencies of the central organs, and the same process would continue in the formation of all single organs, and in the final development of the most minute histological elements. This process would take place in a definitely ordered course, exactly as it has taken place throughout a very long series of ancestors; and the determining and directing factor is simply and solely the nuclear substance, the nucleoplasm, which possesses such a molecular structure in the germ-cell that all such succeeding stages of its molecular structure in future nuclei must necessarily arise from it, as soon as the requisite external conditions are present. This is almost the same conception of ontogenetic development as that which has been held by embryologists who have not accepted the doctrine of evolution: for we have only to transfer the primary cause of development, from an unknown source within the organism, into the nuclear substance, in order to make the views identical.

It appears at first sight that the knowledge which has been gained by studying the indirect division of nuclei is opposed to such a view, for we know that each mother-loop of the so-called nuclear plate divides longitudinally into two exactly equal halves, which can be stained and thus rendered visible.

In this way each resulting daughter-nucleus receives an equal supply of halves, and it therefore appears that the two nuclei must be completely identical. This at least is Strasburger's conclusion, and he regards such identity as a fundamental fact, which cannot be shaken, and with which all attempts at further explanation must be brought into accord.

How then can the gradual transformation of the nuclear substance be brought about? For such a transformation must necessarily take place if the nuclear substance is really the determining factor in development. Strasburger attempts to support his hypothesis by assuming that the inequality of the daughter-nuclei arises from unequal nutrition; and he therefore considers that the inequality is brought about after the division of the nucleus and of the cell. Strasburger has shown, in a manner which is above all criticism, that the nucleus derives its nutrition from the cell-body, but then the cell-bodies of the two ex hypothesi  identical daughter-nuclei must be different from the first, if they are to influence their nuclei in different ways. But if the nucleus determines the nature of the cell, it follows that two identical daughter-nuclei which have arisen by division within one mother-cell cannot come to possess unequal cell-bodies. As a matter of fact, however, the cell-bodies of two daughter-cells often differ in size, in appearance, and in their subsequent history, and these facts are sufficient to prove that in such cases the division of the nucleus must have been unequal. It appears to me to be a necessary conclusion that, in such an instance, the mother-nucleus must have been capable of splitting into nuclear substances of differing quality. I think that, in his argument, Strasburger has over-estimated the support afforded by exact observations upon indirect nuclear division. Certainly the fact, discovered by Flemming, and more exactly studied by Balbiani and Pfitzner, that, in nuclear division, the loops split longitudinally, is of great and even of fundamental importance. Furthermore, the observations, conducted last year by van Beneden, on the process of fertilization in Ascaris, have given to Flemming's discovery a clearer and more definite meaning than could have been at first ascribed to it. The discovery proves, in the first place, that the nucleus always divides into two parts of equal quantity, and further that in every nuclear division, each daughter-nucleus receives the same amount of nuclear substance from the father as from the mother; but, as it seems to me, it is very far from proving that the quality of the parent nucleoplasms must always be equal in the daughter-nuclei. It is true that the fact seems to prove this; and if we remember the description of the most favourable instance which has been hitherto discovered, viz. the process of fertilization in the egg of Ascaris, as represented by van Beneden, the two longitudinal halves of each loop certainly impress the reader as being absolutely identical (compare, for instance, loc. cit. Plate XIX, figs. 1, 4, 5). But we must not forget that we do not see the molecular structure of the nucleoplasm, but something which we can only look upon (when we remember how complex this molecular structure must be) as a very rough expression of its quantity. Our most powerful and best lenses just enable us to make out the form of separate stainable granules present in a loop which is about to divide: they appear as spheres and immediately after division as hemispheres. But according to Strasburger, these granules, the so-called microsomata, only serve for the nutrition of the nuclear substance proper, which lies between them unstainable, and therefore not distinctly visible. But even if these granules represent the true idioplasm, their division into two exactly equal parts would give us no proof of equality or inequality in their constitution: it would only give us an idea of their quantitative relations. We can only obtain proofs as to the quality of the molecular structure of the two halves by their effect on the bodies of the daughter-cells, and we know that these latter are frequently different in size and quality.

This point is so important that I must illustrate it by a few more examples. The so-called polar bodies (to be treated more in detail below) which are expelled during maturation from the eggs of so many animals, are true cells, as was first proved by Bütschli in Nematodes: their formation is due to a process of undoubted cell-division usually accompanied by a typical form of indirect nuclear division [121]. If any one is still in doubt upon this point, after the observations of Fol and Hertwig, he might easily be convinced of its truth by a glance at the figures (unfortunately too little known) which Trinchese [122] has published, illustrating this process in the eggs of certain gastropods. The eggs of Amphorina coerulea are in every way suitable for observation, being entirely translucent, and having large distinct nuclei which differ from the green cytoplasm in colour. In these eggs two polar bodies are formed one after the other: and each of them immediately re-divides: hence it follows that four polar bodies are placed at the pole of the egg. But how is it that these four cells perish, while the nucleus, remaining in the yolk and conjugating with the sperm-nucleus, makes use of the whole body of the egg and developes into the embryo? Obviously because the nature of the polar body is different from that of the egg-cell. But since the nature of the cell is determined by the quality of the nucleus, this quality must differ from the very moment of nuclear division. This is proved by the fact that the supernumerary spermatozoa which sometimes enter the egg do not conjugate with the polar bodies. According to Strasburger's theory, the objection might be urged that the different quality of the nuclei is here caused by the very different quantity of cytoplasm by which they are surrounded and nourished; but on the one hand the smallness of the cell-bodies which surround most polar globules must have some explanation, and this can only be found in the nature of the nucleus; and on the other hand the quantity of the cell-body which surrounds the polar globules of Amphorina  is, as a matter of fact, somewhat larger than the sphere of green cytoplasm which surrounds the nucleus of the egg! The difference between the polar bodies and the egg-cell can thus only be explained on the supposition that, in the division of the nuclear spindle, two qualitatively different daughter-nuclei are produced.

There does not seem to be any objection to the view that the microsomata of the nuclear loops—assuming that these bodies represent the idioplasm—are capable of dividing into halves, equal in form and appearance, but unequal in quality. We know that this very process takes place in many egg-cells; thus in the egg of the earth-worm the first two segmentation spheres are equal in size and appearance, and yet the one forms the endoderm and the other the ectoderm of the embryo.

I therefore believe that we must accept the hypothesis that, in indirect nuclear division, the formation of unequal halves may take place quite as readily as the formation of equal halves, and that the equality or inequality of the subsequently produced daughter-cells must depend upon that of the nuclei. Thus during ontogeny a gradual transformation of the nuclear substance takes place, necessarily imposed upon it, according to certain laws, by its own nature, and such transformation is accompanied by a gradual change in the character of the cell-bodies.

It is true that we cannot gain any detailed knowledge of the nature of these changes in the nuclear substance, but we can very well arrive at certain general conclusions about them. If we may suppose, with Nägeli, that the molecular structure of the germ-idioplasm, or according to our terminology the germ-plasm, becomes more complicated according to the greater complexity of the organism developed from it, then the following conclusions will also be accepted,—that the molecular structure of the nuclear substance is simpler as the differences between the structures arising from it become less; that therefore the nuclear substance of the segmentation-cell of the earth-worm, which potentially contains the whole of the ectoderm, possesses a more complicated molecular structure than that of a single epidermic cell or nerve-cell. These conclusions will be admitted when it is remembered that every detail in the whole organism must be represented in the germ-plasm by its own special and peculiar arrangement of the groups of molecules (the micellae of Nägeli), and that the germ-plasm not only contains the whole of the quantitative and qualitative characters of the species, but also all individual variations as far as these are hereditary: for example the small depression in the centre of the chin noticed in some families. The physical causes of all apparently unimportant hereditary habits or structures, of hereditary talents, and other mental peculiarities, must all be contained in the minute quantity of germ-plasm which is possessed by the nucleus of a germ-cell;—not indeed as the preformed germs of structure (the gemmules of pangenesis), but as variations in its molecular constitution; if this be impossible, such characters could not be inherited. Nägeli has shown in his work, which is so rich in suggestive ideas, that even in so minute a space as the thousandth of a cubic millimetre, such an enormous number (400,000,000) of micellae may be present, that the most diverse and complicated arrangements become possible. It therefore follows that the molecular structure of the germ-plasm in the germ-cells of an individual must be distinguished from that of another individual by certain differences, although these may be but small; and it also follows that the germ-plasm of any species must differ from that of all other species.

These considerations lead us to conclude that the molecular structure of the germ-plasm in all higher animals must be excessively complex, and, at the same time, that this complexity must gradually diminish during ontogeny as the structures still to be formed from any cell, and therefore represented in the molecular constitution of its nucleoplasm, become less in number. I do not mean to imply that the nucleoplasm contains preformed structures which are gradually reduced in number as they are given off in various directions during the building-up of organs: I mean that the complexity of the molecular structure decreases as the potentiality for further development also decreases, such potentiality being represented in the molecular structure of the nucleus. The nucleoplasm, which in the grouping of its particles contains potentially a hundred different modifications of this substance, must possess far more numerous kinds and far more complex arrangements of such particles than the nucleoplasm which only contains a single modification, capable of determining the character of a single kind of cell. The development of the nucleoplasm during ontogeny may be to some extent compared to an army composed of corps, which are made up of divisions, and these of brigades, and so on. The whole army may be taken to represent the nucleoplasm of the germ-cell: the earliest cell-division (as into the first cells of the ectoderm and endoderm) may be represented by the separation of the two corps, similarly formed but with different duties: and the following cell-divisions by the successive detachment of divisions, brigades, regiments, battalions, companies, etc.; and as the groups become simpler so does their sphere of action become limited. It must be admitted that this metaphor is imperfect in two respects, first, because the quantity of the nucleoplasm is not diminished, but only its complexity, and secondly, because the strength of an army chiefly depends upon its numbers, not on the complexity of its constitution. And we must also guard against the supposition that unequal nuclear division simply means a separation of part of the molecular structure, like the detachment of a regiment from a brigade. On the contrary, the molecular constitution of the mother-nucleus is certainly changed during division in such a way that one or both halves receive a new structure which did not exist before their formation.

My opinion as to the behaviour of the idioplasm during ontogeny, not only differs from that of Nägeli, in that the latter maintains that the idioplasm only undergoes changes in its ‘conditions of tension and movement,' but also because he imagines this substance to be composed of the preformed germs of structures (‘Anlagen'). Nägeli's views are obviously bound up with his theory of a continuous network of idioplasm throughout the whole body; perhaps he would have adopted other conclusions had he been aware of the fact that the idioplasm must only be sought for in the nuclei. Nägeli's views as to ontogeny can be best seen in the following passages: ‘As soon as ontogenetic development begins, the groups of micellae in the idioplasm which effect the first stage of development, enter upon active growth: such activity causes a passive growth of the other groups, and an increase in the whole idioplasm, perhaps to many times its former bulk. But the intensities of growth in the two series of groups are unequal, and consequently an increasing tension is produced which sooner or later, according to the number, arrangement, and energy of the active groups, necessarily renders the continuation of the process impossible. In consequence of such disturbance to the equilibrium, active growth now takes place in the next group, leading to fresh irritation, and this group then reacts more strongly than all the others upon the tension which first stimulated its activity. These changes are repeated until all the groups are gone through, and the ontogenetic development finally reaches the stage at which propagation takes place, and thus the original stage of the germ is reached.'

Hence, according to Nägeli, the different stages of ontogeny arise out of the activities of different parts of the idioplasm: certain groups of micellae in the idioplasm represent the germs (‘Anlagen') of certain structures in the organism: when any such germ reacts under stimulation it produces the corresponding structure. It seems to me that this hypothesis bears some resemblance to Darwin's theory of pangenesis. I think that Nägeli's preformed germs of structures (‘Anlagen') and his groups of such germs are highly elaborated equivalents of the gemmules of pangenesis, which, according to Darwin, manifest activity when their turn comes, or, according to Nägeli, when they react under stimulation. When a group of such germs, by their active growth or by their ‘irritation,' have caused a similar active growth or a similar irritation in the next group, the former may come to rest, or may remain in a state of activity together with its successor, for a longer or shorter period. Its activity may even last for an unlimited time, as is the case in the formation of leafy shoots in many plants.

Here, again, we recognize the fact that Nägeli's whole hypothesis is intimately connected with the supposition that the entire mass of idioplasm is continuous throughout the organism. Sometimes one part of the idioplasm and sometimes another part is irritated, and then produces the corresponding organ. But if, on the other hand, the idioplasm does not represent a directly continuous mass, but is composed of thousands of single nucleoplasms which only act together through the medium of their cell-bodies, then we must substitute the conception of ‘ontogenetic stages of development of the idioplasm' for the conception of germs of structure (‘Anlagen'). The different varieties of nucleoplasm which arise during ontogeny represent, as it were, the germs of Nägeli (‘Anlagen'), because, by means of their molecular structure, they create a specific constitution in the cell-bodies over which they have control, and also because they determine the succession of future nuclei and cells.

It is in this sense, and no other, that I can speak of the presence of preformed germs (‘Anlagen') in the idioplasm. We may suppose that the idioplasm of the first segmentation nucleus is but slightly different from that of the second ontogenetic stage, viz. that of the two following segmentation nuclei. Perhaps only a few groups of micellae have been displaced or somewhat differently arranged. But nevertheless such groups of micellae were not the germs (‘Anlagen') of a second stage which pre-existed in the first stage, for the two are distinguished by the possession of a different molecular structure. This structure in the second stage, under normal conditions of development, again brings about the change by which the different molecular structure of the third stage is produced, and so on.

It may be argued that von Baer's well-known and fundamental law of development is opposed to the hypothesis that the idioplasm of successive ontogenetic stages must gradually assume a simpler molecular structure. The organization of the species has, on the whole, increased immensely in complexity during the course of phylogeny: and if the phyletic stages are repeated in the ontogeny, it seems to follow that the structure of the idioplasm must become more complex in the course of ontogeny instead of becoming simpler. But the complexity of the whole organism is not represented in the molecular structure of the idioplasm of any single nucleus, but by that of all the nuclei present at any one time. It is true that the germ-cell, or rather the idioplasm of the germ-nucleus, must gain greater complexity as the organism which arises from it becomes more complex; but the individual nucleoplasms of each ontogenetic stage may become simpler, while the whole mass of idioplasms in the organism (which, taken together, represent the stage in question) does not by any means lose in complexity.

If we must therefore assume that the molecular structure of the nucleoplasm becomes simpler in the course of ontogeny, as the number of structures which it potentially contains become smaller, it follows that the nucleoplasm in the cells of fully differentiated tissues—such as muscle, nerve, sense-organs, or glands—must possess relatively the most simple molecular structure; for it cannot originate any fresh modification of nucleoplasm, but can only continue to produce cells of the same structure, although it does not always retain this power.

We are thus brought back to the fundamental question as to how the germ-cells arise in the organism. Is it possible that the nucleoplasm of the germ-cell, with its immensely complex molecular structure, potentially containing all the specific peculiarities of an individual, can arise from the nucleoplasm of any of the body-cells,—a substance which, as we have just seen, has lost the power of originating any new kind of cell, because of the continual simplification of its structure during development? It seems to me that it would be impossible for the simple nucleoplasm of the somatic cells to thus suddenly acquire the power of originating the most complex nucleoplasm from which alone the entire organism can be built up: I cannot see any evidence for the existence of a force which could effect such a transformation.

This difficulty has already been appreciated by other writers. Nussbaum's [123] theoretical views, which I have already mentioned, also depend upon the hypothesis that cells which have once become differentiated for the performance of special functions cannot be re-transformed into sexual cells: he also concludes that the latter are separated from all other cells at a very early period of embryonic development, before any histological differentiation has taken place. Valaoritis [124] has also recognised that the transformation of histologically differentiated cells into sexual cells is impossible. He was led to believe that the sexual cells of Vertebrata arise from the white blood corpuscles, for he looked upon these latter as differentiated to the smallest extent possible. Neither of these views can be maintained. The former, because the sexual cells of all plants and most animals are not, as a matter of fact, separated from the somatic cells at the beginning of ontogeny; the latter, because it is contradicted by the fact that the sexual cells of vertebrates do not arise from blood corpuscles, but from the germinal epithelium. But even if this fact had not been ascertained we should be compelled to reject Valaoritis' hypothesis on theoretical grounds, for it is an error to assume that white blood corpuscles are undifferentiated, and that their nucleoplasm is similar to the germ-plasm. There is no nucleoplasm like that of the germ-cell in any of the somatic cells, and no one of these latter can be said to be undifferentiated. All somatic cells possess a certain degree of differentiation, which may be rigidly limited to one single direction, or may take place in one of many directions. All these cells are widely different from the egg-cell from which they originated: they are all separated from it by many generations of cells, and this fact implies that their idioplasms possess a widely different structure from the idioplasm, or germ-plasm, of the egg-cell. Even the nuclei of the two first segmentation spheres cannot possess the same idioplasm as that of the first segmentation nucleus, and it is, of course, far less possible for such an idioplasm to be present in the nucleus of any of the later cells of the embryo. The structure of the idioplasm must necessarily become more and more different from that of the first segmentation nucleus, as the development of the embryo proceeds. The idioplasm of the first segmentation nucleus, and of this nucleus alone, is germ-plasm, and possesses a structure such that an entire organism can be produced from it. Many writers appear to consider it a matter of course that any embryonic cell can reproduce the entire organism, if placed under suitable conditions. But, when we carefully look into the subject, we see that such powers are not even possessed by those cells of the embryo which are nearest to the egg-cell—viz. the first two segmentation spheres. We have only to remember the numerous cases in which one of them forms the ectoderm of the animal while the other produces the endoderm, in order to admit the validity of this objection.

But if the first segmentation spheres are not able to develope into a complete organism, how can this be the case with one of the later embryonic cells, or one of the cells of the fully developed animal body? It is true that we speak of certain cells as being ‘of embryonic character,' and only recently Kölliker [125]has given a list of such cells, among which he includes osteoblasts, cartilage cells, lymph corpuscles, and connective tissue corpuscles: but even if these cells really deserve such a designation, no explanation of the formation of germ-cells is afforded, for the idioplasm of the latter must be widely different from that of the former.

It is an error to suppose that we gain any further insight into the formation of germ-cells by referring to these cells of so-called ‘embryonic character,' which are contained in the body of the mature organism. It is of course well known that many cells are characterized by very sharply defined histological differentiation, while others are but slightly differentiated; but it is as difficult to imagine that germ-cells can arise from the latter as from the former. Both classes of cells contain idioplasm with a structuredifferent from that which is contained in the germ-cell, and we have no right to assume that any of them can form germ-cells until it is proved that somatic idioplasm is capable of undergoing re-transformation into germ-idioplasm.

The same argument applies to the cells of the embryo itself, and it therefore follows that those instances of early separation of sexual from somatic cells, upon which I have often insisted as indicating the continuity of the germ-plasm, do not now appear to be of such conclusive importance as at the time when we were not sure about the localization of the idioplasm in the nuclei. In the great majority of cases the germ-cells are not separated at the beginning of embryonic development, but only in some one of the later stages. A single exception is found in the pole-cells (‘Polzellen') of Diptera, as was shown many years ago by Robin [126] and myself [127]. These are the first cells formed in the egg, and according to the later observations of Metschnikoff [128] and Balbiani [129], they become the sexual glands of the embryo. Here therefore the germ-plasm maintains a true unbroken continuity. The nucleus of the egg-cell directly gives rise to the nuclei of the pole-cells, and there is every reason to believe that the latter receive unchanged a portion of the idioplasm of the former, and with it the tendencies of heredity. But in all other cases the germ-cells arise by division from some of the later embryonic cells, and as these belong to a more advanced ontogenetic stage in the development of the idioplasm, we can only conclude that continuity is maintained, by assuming (as I do) that a small part of the germ-plasm persists unchanged during the division of the segmentation nucleus and remains mixed with the idioplasm of a certain series of cells, and that the formation of true germ-cells is brought about at a certain point in the series by the appearance of cells in which the germ-plasm becomes predominant. But if we accept this hypothesis it does not make any difference, theoretically, whether the germ-plasm becomes predominant in the third, tenth, hundredth, or millionth generation of cells. It therefore follows that cases of early separation of the germ-cells afford no proof of a direct persistence of the parent germ-cells in those of the offspring; for a cell the offspring of which become partly somatic and partly germ-cells cannot itself have the characters of a germ-cell; but it may nevertheless contain germ-idioplasm, and may thus transfer the substance which forms the basis of heredity from the germ of the parent to that of the offspring.

If we are unwilling to accept this hypothesis, nothing remains but to credit the idioplasm of each successive ontogenetic stage with a capability of re-transformation into the first stage. Strasburger accepts this view; and he believes that the idioplasm of the nuclei changes during the course of ontogeny, but returns to the condition of the first stage of the germ, at its close. But the rule of probability is against such a suggestion. Suppose, for instance, that the idioplasm of the germ-cell is characterized by ten different qualities, each of which may be arranged relatively to the others in two different ways, then the probability in favour of any given combination would be represented by the fraction (1/2)10  = 1/1024: that is to say, the re-transformation of somatic idioplasm into germ-plasm will occur once in 1024 times, and it is therefore impossible for such re-transformation to become the rule. It is also obvious that the complex structure of the germ-plasm which potentially contains, with the likeness of a faithful portrait, the whole individuality of the parent, cannot be represented by only ten characters, but that there must be an immensely greater number; it is also obvious that the possibilities of the arrangement of single characters must be assumed to be much larger than two; so that we get the formula (1/p ), where p  represents the possibilities, and n  the characters. Thus if n  and p  are but slightly larger than we assumed above, the probabilities become so slight as to altogether exclude the hypothesis of a re-transformation of somatic idioplasm into germ-plasm.

It may be objected that such re-transformation is much more probable in the case of those germ-cells which separate early from the somatic cells. Nothing can in fact be urged against the possibility that the idioplasm of (e. g.) the third generation of cells may pass back into the condition of the idioplasm of the germ-cell; although of course the mere possibility does not prove the fact. But there are not many cases in which the sexual cells are separated so early as the third generation: and it is very rare for them to separate at any time during the true segmentation of the egg. In Daphnidae  (Moina ) separation occurs in the fifth stage of segmentation [130], and although this is unusually early it does not happen until the idioplasm has changed its molecular structure six times. In Sagitta [131] the separation does not take place until the archenteron is being formed, and this is after several hundred embryonic cells have been produced, and thus after the germ-plasm has changed its molecular structure ten or more times. But in most cases, separation takes place at a much later stage; thus in Hydroids it does not happen until after hundreds or thousands of cell-generations have been passed through; and the same fact holds in the higher plants, where the production of germ-cells frequently occurs at the end of ontogeny. In such cases the probability of a re-transformation of somatic idioplasm into germ-plasm becomes infinitely small.

It is true that these considerations only refer to a rapid and sudden re-transformation of the idioplasm. If it could be proved that development is not merely in appearance but in reality a cyclical process, then nothing could be urged against the occurrence of re-transformation. It has been recently maintained by Minot [132] that all development is cyclical, but this is obviously incorrect, for Nägeli has already shown that direct non-cyclical courses of development exist, or at all events courses in which the earliest condition is not repeated at the close of development. The phyletic development of the whole organic world clearly illustrates a development of the latter kind; for although we may assume that organic development is not nearly concluded, it is nevertheless safe to predict that it will never revert to its original starting-point, by backward development over the same course as that which it has already traversed. No one can believe that existing Phanerogams will ever, in the future history of the world, retrace all the stages of phyletic development in precise inverse order, and thus return to the form of unicellular Algae or Monera; or that existing placental mammals will develope into Marsupialia,Monotremata, mammal-like reptiles, and the lower vertebrate forms, into worms and finally into Monera. But how can a course of development, which seems to be impossible in phylogeny, occur as the regular method of ontogeny? And quite apart from the question of possibility, we have to ask for proofs of the actual occurrence of cyclical development. Such a proof would be afforded if it could be shown that the nucleoplasm of those somatic cells which (e.g. in Hydroids) are transformed into germ-cells passes backwards through many stages of development into the nucleoplasm of the germ-cell. It is true that we can only recognise differences in the structure of the idioplasm by its effects upon the cell-body, but no effects are produced which indicate that such backward development takes place. Since the course of onward development is compelled to pass through the numerous stages which are implied in segmentation and the subsequent building-up of the embryo, etc., it is quite impossible to assume that backward development would take place suddenly. It would be at least necessary to suppose that the cells of embryonic character, which are said to be transformed into primitive germ-cells, must pass back through at any rate the main phases of their ontogeny. A sudden transformation of the nucleoplasm of a somatic cell into that of a germ-cell would be almost as incredible as the transformation of a mammal into an amoeba; and yet we are compelled to admit that the transformation must be sudden, for no trace of such retrogressive stages of development can be seen. If the appearance of the whole cell gives us any knowledge as to the structure of its nuclear idioplasm, we may be sure that the development of a primitive germ-cell proceeds without a break, from the moment of its first recognizable formation, to the ultimate production of distinct male or female sexual cells.

I am well aware that Strasburger has stated that, in the ultimate maturation of the sexual cells, the substance of the nuclei returns to a condition similar to that which existed at the beginning of ontogenetic development; still such a statement is no proof, but only an assumption made to support a theory. I am also aware that Nussbaum and others believe that, in the formation of spermatozoa in higher animals, a backward development sets in at a certain stage; but even if this interpretation be correct, such backward development would only lead as far as the primitive germ-cell, and would afford no explanation of the further transformation of the idioplasm of this cell into germ-plasm. But this latter transformation is just the point which most needs proof upon any theory except the one which assumes that the primitive germ-cell still contains unchanged germ-plasm. Every attempt to render probable such a re-transformation of somatic nucleoplasm into germ-plasm breaks down before the facts known of the Hydroids, in which only certain cells in the body, out of the numerous so-called embryonic cells, are capable of becoming primitive germ-cells, while the rest do not possess this power.

I must therefore consider as erroneous the hypothesis which assumes that the somatic nucleoplasm may be transformed into germ-plasm. Such a view may be called ‘the hypothesis of the cyclical development of the germ-plasm.'

Nägeli has tried to support such an hypothesis on phyletic grounds. He believes that phyletic development follows from an extremely slow but steady change in the idioplasm, in the direction of greater complexity, and that such changes only become visible periodically. He believes that the passage from one phyletic stage to another is chiefly due to the fact that ‘in any ontogeny, the very last structural change upon which the separation of germs depends, takes place in a higher stage, one or more cell-generations later' than it occurred in a lower stage. ‘The last structural change itself remains the same, while the series of structural changes immediately preceding it is increased.' I believe that Nägeli, being a botanist, has been too greatly influenced by the phenomena of plant-life. It is certainly true that in plants, and especially in the higher forms, the germ-cells only make their appearance, as it were, at the end of ontogeny; but facts such as these do not hold in the animal kingdom: at any rate they are not true in the great majority of cases. In animals, as I have already mentioned several times, the germ-cells are separated from the somatic cells during embryonic development, sometimes even at its very commencement; and it is obvious that this latter is the original, phyletically oldest, mode of formation. The facts at our disposal indicate that the germ-cells only appear, for the first time, after embryological development, in those cases where the formation of asexually produced colonies takes place, either with or without alternation of generations; or in cases where alternation of generations occurs without the formation of such colonies. In a colony of polypes, the germ-cells are produced by the later generations, and not by the founder of the colony which was developed from an egg. This is also true of the colonies of Siphonophora, and the germ-cells appear to arise very late in certain instances of protracted metamorphosis (Echinodermata), but on the other hand, they arise during the embryonic development of other forms (Insecta) which also undergo metamorphosis. It is obvious that the phyletic development of colonies or stocks must have succeeded that of single individuals, and that the formation of germ-cells in the latter must therefore represent the original method. Thus the germ-cells originally arose at the beginning of ontogeny and not at its close, when the somatic cells are formed.

This statement is especially supported by the history of certain lower plants, or at any rate chlorophyll-containing organisms, and I think that these forms supply an admirable illustration of my theory as to the phyletic origin of germ-cells, as explained in my earlier papers upon the same subject.

The phyletic origin of germ-cells obviously coincides with the differentiation of the first multicellular organisms by division of labour [133]. If we desire to investigate the relation between germ-cells and somatic cells, we must not only consider the highly developed and strongly differentiated multicellular organisms, but we must also turn our attention to those simpler forms in which phyletic transitions are represented. In addition to solitary unicellular organisms, we know of others living in colonies of which the constituent units or cells (each of them equivalent to a unicellular organism) are morphologically and physiologically identical. Each unit feeds, moves, and under certain circumstances is capable of reproducing itself, and of thus forming a new colony by repeated division. The genus Pandorina  (Fig. I), belonging to the natural order Volvocineae, represents such ‘homoplastid' (Götte) organisms. It forms a spherical colony composed of ciliated cells, all of which are exactly alike: they are embedded in a colourless gelatinous mass. Each cell contains chlorophyll, and possesses a red eye-spot, and a pulsating vacuole. These colonies are propagated by the sexual and asexual (Fig. II) methods alternately, although in the former case the conjugating swarm-cells cannot be distinguished with certainty as male or female. In both kinds of reproduction, each cell in the colony acts as a reproductive cell; in fact, it behaves exactly like a unicellular organism.

I. Pandorina morum  (after Pringsheim), a swarming colony.


II. A colony divided into sixteen daughter colonies: all the cells alike.

III. A young individual of Volvox minor  (after Stein), still enclosed in the wall of the cell from which it has been parthenogenetically produced. The constituent cells are divided into somatic (sz ), germ-cells (kz ).

It is very interesting to find in another genus belonging to the same natural order, that the transition from the homoplastid to the heteroplastid condition, and the separation into somatic and reproductive cells, have taken place. In Volvox  (Fig. III) the spherical colony consists of two kinds of cells, viz. of very numerous small ciliated cells, and of a much smaller number of large germ-cells without cilia. The latter alone possess the power of producing a new colony, and this takes place by the asexual and sexual methods alternately: in the latter a typical fertilization of large egg-cells by small spermatozoa occurs. The sexual differentiation of the germ-cells is not material to the question we are now considering; the important point is to ascertain whether here, at the very origin of heteroplastid organisms, the germ-cells, sexually differentiated or not, arise from the somatic cells at the end of ontogeny, or whether the substance of the parent germ-cell, during embryonic development, is from the first  separated into somatic and germ-cells. The former interpretation would support Nägeli's view, the latter would support my own. But Kirchner [134] distinctly states that the germ-cells of Volvox  are differentiated during embryonic development, that is, before the escape of the young heteroplastid organism from the egg-capsule. We cannot therefore imagine that the phyletic development of the first heteroplastid organism took place in a manner different from that which I have previously advocated on theoretical grounds, before this striking instance occurred to me. The germ-plasm (nucleoplasm) of some homoplastid organism (similar to Pandorina ) must have become modified in molecular structure during the course of phylogeny, so that the colony of cells produced by its division was no longer made up of identical units, but of two different kinds. After this separation, the germ-cells alone retained the power of reproduction possessed by all the parent cells, while the rest only retained the power of producing similar cells by division. Thus Volvox  seems to afford distinct evidence that in the phyletic origin of the heteroplastid groups, somatic cells were not, as Nägeli supposes, intercalated between the mother germ-cell and the daughter germ-cells in each ontogeny, but that the somatic cells arose directly from the former, with which they were previously identical, as they are even now in the case of Pandorina. Thus the continuity of the germ-plasm is established at least for the beginning of the phyletic series of development.

The fact, already often mentioned, that in most higher organisms the separation of germ-cells takes place later, and often very late, at the end of the whole ontogeny, proves that the time at which this separation of the two kinds of cells took place, must have been gradually changed. In this respect the well-established instances of early separation are of great value, because they serve to connect the extreme cases. It is quite impossible to maintain that the germ-cells of Hydroids or of the higher plants, exist from the time of embryonic development, as indifferent cells, which cannot be distinguished from others, and which are only differentiated at a later period. Such a view is contradicted by the simplest mathematical consideration; for it is obvious that none of the relatively few cells of the embryo can be excluded from the enormous increase by division, which must take place in order to produce the large number of daughter individuals which form a colony of polypes. It is therefore clear that all the cells of the embryo must for a long time act as somatic cells, and none of them can be reserved as germ-cells and nothing else: this conclusion is moreover confirmed by direct observation. The sexual bud of a Coryne  arises at a part of the Polype which does not in any way differ from surrounding areas, the body wall being uniformly made up of two single layers of cells, the one forming the ectoderm and the other the endoderm. Rapid growth then takes place at a single spot, and some of the young cells thus produced are transformed into germ-cells, which did not previously exist as separate cells.

Strictly speaking I have therefore fallen into an inaccuracy in maintaining (in former works) that the germ-cells are themselves immortal; they only contain the undying part of the organism—the germ-plasm; and although this substance is, as far as we know, invariably surrounded by a cell-body, it does not always control the latter, and thus confer upon it the character of a germ-cell. But this admission does not materially change our view of the whole subject. We may still contrast the germ-cells, as the undying part of the Metazoan body, with the perishable somatic cells. If the nature and the character of a cell is determined by the substance of the nucleus and not by the cell-body, then the immortality of the germ-cells is preserved, although only the nuclear substance passes uninterruptedly from one generation to another.

G. Jäger [135] was the first to state that the body in the higher organisms is made up of two kinds of cells, viz., ontogenetic and phyletic cells, and that the latter, the reproductive cells, are not a product of the former (the body-cells), but that they arise directly from the parent germ-cell. He assumed that the formation of germ-cells takes place at the earliest stage of embryonic life, and he thus believed the connexion between the germ-plasm of the parent and of the offspring had received a satisfactory explanation. As I have previously mentioned in the introduction, Nussbaum also brought forward this hypothesis at a later period, and also based it upon a continuity of the germ-cells. He assumed that the fertilized egg is divided into the cells of the individual and into the cells which effect the preservation of the species, and he supported this view by referring to the few known cases of early separation of the sexual cells. He even maintained this hypothesis when I had proved in my investigations on Hydromedusae that the sexual cells are not always separated from the somatic cells during embryonic development, but often at a far later period. Not only is the hypothesis of a direct connexion between the germ-cells of the offspring and parent broken down by the facts known in the Hydroids, and in the Phanerogams [136] which resemble them in this respect, but even the instances of early separated germ-cells quoted by Jäger and Nussbaum do not as a matter of fact support their hypothesis. Among existing organisms it is extremely rare for the germ-cells to arise directly from the parent egg-cell (as in Diptera). If, however, the germ-cells are separated only a few cell-generations later, the postulated continuity breaks down; for an embryonic cell, of which the offspring are partly germ-cells and partly somatic cells, cannot itself possess the nature of a germ-cell, and its idioplasm cannot be identical with that of the parent germ-cell. In order to prove this, it is only necessary to refer to the arguments as to the ontogenetic stages of the idioplasm. In the above-mentioned instances, the continuity from the germ-substance of the parent to that of the offspring can only be explained by the supposition that the somatic nucleoplasm still contains some unchanged germ-plasm. I believe that the fundamental idea of Jäger and Nussbaum is quite correct: it is the same idea which has led me to the hypothesis of the continuity of the germ-plasm, viz., the conviction that heredity can only be understood by means of such an hypothesis. But both these writers have worked out the idea in the form of an hypothesis which does not correspond with the facts. That this is the case is also shown by the following words of Nussbaum—‘the cell-material of the individual (somatic cells) can never produce a single sexual cell.' Such production undoubtedly takes place, not only in Hydroids and Phanerogams, but in many other instances. The germ-cells cannot indeed be produced by any indifferent cell of embryonic character, but by certain cells, and under circumstances which allow us to positively conclude that they have been predestined for this purpose from the beginning. In other words, the cells in question contain germ-plasm, and this alone enables them to become germ-cells.

As a result of my investigations on Hydroids [137], I concluded that the germ-plasm is present in a very finely divided and therefore invisible state in certain somatic cells, from the very beginning of embryonic development, and that it is then transmitted through innumerable cell-generations, to those remote individuals of the colony in which sexual products are formed. This conclusion is based upon the fact that germ-cells only occur in certain localized areas (‘Keimstätten') in which neither germ-cells nor primitive germ-cells (the cells which are transformed into germ-cells at a later period) were previously present. The primitive germ-cells are also only formed in localized areas, arising from somatic cells of the ectoderm. The place at which germ-cells arise is the same in all individuals of the same species; but differs in different species. It can be shown that such differences correspond to different phyletic stages of a process of displacement, which tends to remove the localized area from its original position (the manubrium of the Medusa) in a centripetal direction. For the purposes of the present enquiry it is unnecessary to discuss the reasons for this change of position. The phyletic displacements of the localized areas are brought about during ontogeny by an actual migration of primitive germ-cells from the place where they arose to the position at which they undergo differentiation into germ-cells. But we cannot believe that primitive germ-cells would migrate if the germ-cells could be formed from any of the other young cells of indifferent character which are so numerous in Hydroids. Even when the localized area undergoes very slight displacement, e.g. when it is removed from the exterior to the interior of the mesogloea [138], the change is always effected by active migration of primitive germ-cells through the substance of the mesogloea. Although the localized area has been largely displaced in the course of phylogeny, the changes in position have always taken place by very gradual stages, and never suddenly, and all these stages are repeated in the ontogeny of all existing species, by the migration of the primitive germ-cells from the ancestral area to the place where the germ-cells now arise. Hartlaub [139]has recently added a further instance (that of Obelia ) to the numerous minute descriptions of these phyletic displacements of the localized area, and ontogenetic migrations of the primitive germ-cells, which are given in my work already referred to. The instance of Obelia  is of especial interest as the direction of displacement is here reversed, taking place centrifugally instead of in a centripetal direction.

But if displacements of the localized areas can only take place by the frequently roundabout method of the migration of primitive germ-cells, we are obliged to conclude that such is the only manner in which the change can be effected, and that other cells are unable to play the role of the primitive germ-cells. And if other cells are unable to take this part, it must be because nucleoplasm of a certain character has to be present in order to form germ-cells, or according to the terms of my theory, the presence of germ-plasm is indispensable for this purpose. I do not see how we can escape the conclusion that there is continuity of the germ-plasm; for if it were supposed that somatic idioplasm undergoes transformation into germ-plasm, such an assumption would not explain why the displacement occurs by small stages, and with extreme and constant care for the preservation of a connexion with cells of the ancestral area. This fact can only be explained by the hypothesis that cell-generations other than those which end in the production of the cells of the ancestral area, are totally incapable of transformation into germ-cells.

Strasburger has objected that the transmission of germ-plasm along certain lines, viz. through a certain succession of somatic cells, is impossible, because the idioplasm is situated in the nucleus and not in the cell-body, and because a nucleus can only divide into two exactly equal halves by the indirect method of division, which takes place, as we must believe, in these cases. ‘It might indeed be supposed,' says Strasburger, ‘that during nuclear division certain molecular groups remain unchanged in the nuclear substance which is in other respects transformed, and that these groups are uniformly distributed through the whole organism; but we cannot imagine that their transmission could only be effected along certain lines.'

I do not think that Strasburger's objections can be maintained. I base this opinion on my previous criticism upon the assumed equality of the two daughter-nuclei formed by indirect division. I do not see any reason why the two halves must always possess the same structure, although they may be of equal size and weight. I am surprised that Strasburger should admit the possibility that the germ-plasm, which, as I think, is mixed with the idioplasm of the somatic cells, may remain unchanged in its passage through the body; for if this writer be correct in maintaining that the changes of nuclear substance in ontogeny are effected by the nutritive influence of the cell-body (cytoplasm), it follows that the whole nuclear substance of a cell must be changed at every division, and that no unchanged part can remain. We can only imagine that one part of a nucleus may undergo change while the other part remains unchanged, if we hold that the necessary transformations of nuclear substance are effected, by purely internal causes, viz. that they follow from the constitution of the nucleoplasm. But that one part may remain unchanged, and that such persistence does, as a matter of fact, occur is shown by the cases above described, in which the germ-cells separate very early from the developing egg-cell. Thus in the egg of Diptera, the two nuclei which are first separated by division from the segmentation nucleus, form the sexual cells, and this proves that they receive the germ-plasm of the segmentation nucleus unchanged. But during or before the separation of these two nuclei, the remaining part of the segmentation nucleus must have become changed in nature, or else it would continue to form ‘pole-cells' at a later period instead of forming somatic cells. Although in many cases the cell-bodies of such early embryonic cells fail to exhibit any visible differences, the idioplasm of their nuclei must undoubtedly differ, or else they could not develope in different directions. It seems to me not only possible, but in every way probable, that the bodies of such early embryonic cells are equal in reality as well as in appearance; for, although the idioplasm of the nucleus determines the character of the cell-body, and although every differentiation of the latter depends upon a certain structure of its nucleoplasm, it does not necessarily follow that the converse proposition is true, viz. that each change in the structure of the nucleoplasm must effect a change in the cell-body. Just as rain is impossible without clouds, but every cloud does not necessarily produce rain, so growth is impossible without chemical change, but chemical processes of every kind and degree need not produce growth. In the same manner every kind of change in the molecular structure of the nucleoplasm need not exercise a transforming influence on the cytoplasm, and we can easily imagine that a long series of changes in the nucleoplasm may appear only in the kind and energy of the nuclear divisions which take place, the cell-substance remaining unchanged, as far as its molecular and chemical structure is concerned. This suggestion is in accordance with the fact that during the first period of embryonic development in animals, the cell-bodies do not exhibit any visible differences, or only such as are very slight; although exceptional instances occur, especially among the lower animals. But even these latter (e.g. the difference in appearance of the cells of the ectoderm and endoderm in sponges and Coelenterata) perhaps depend more largely upon a different admixture of nutritive substances than upon any marked difference in the cytoplasm itself. It is obvious that, in the construction of the embryo, the amount of cell-material must be first of all increased, and that it is only at a later period that the material must be differentiated so as to possess various qualities, according to the principle of division of labour. Facts of this kind are also opposed to Strasburger's view, that the cause of changes in the nucleoplasm does not lie within this substance itself but within the cell-body.

I believe I have shown that theoretically hardly any objections can be raised against the view that the nuclear substance of somatic cells may contain unchanged germ-plasm, or that this germ-plasm may be transmitted along certain lines. It is true that we might imagine a priori  that all somatic nuclei contain a small amount of unchanged germ-plasm. In Hydroids such an assumption cannot be made, because only certain cells in a certain succession possess the power of developing into germ-cells; but it might well be imagined that in some organisms it would be a great advantage if every part possessed the power of growing up into the whole organism and of producing sexual cells under appropriate circumstances. Such cases might exist if it were possible for all somatic nuclei to contain a minute fraction of unchanged germ-plasm. For this reason, Strasburger's other objection against my theory also fails to hold; viz. that certain plants can be propagated by pieces of rhizomes, roots, or even by means of leaves, and that plants produced in this manner may finally give rise to flowers, fruit and seeds, from which new plants arise. ‘It is easy to grow new plants from the leaves of Begonia  which have been cut off and merely laid upon moist sand, and yet in the normal course of ontogeny the molecules of germ-plasm would not have been compelled to pass through the leaf; and they ought therefore to be absent from its tissue. Since it is possible to raise from the leaf a plant which produces flower and fruit, it is perfectly certain that special cells containing the germ substance cannot exist in the plant.' But I think that this fact only proves, that in Begonia  and similar plants, all the cells of the leaves or perhaps only certain cells contain a small amount of germ-plasm, and that consequently these plants are specially adapted for propagation by leaves. How is it then that all plants cannot be reproduced in this way? No one has ever grown a tree from the leaf of the lime or oak, or a flowering plant from the leaf of the tulip or convolvulus. It is insufficient to reply that, in the last-mentioned cases, the leaves are more strongly specialized, and have thus become unable to produce germ-substance; for the leaf-cells in these different plants have hardly undergone histological differentiation in different degrees. If, notwithstanding, the one can produce a flowering plant, while the others have not this power, it is of course clear that reasons other than the degree of histological differentiation must exist; and, according to my opinion, such a reason is to be found in the admixture of a minute quantity of unchanged germ-plasm with some of their nuclei.

In Sachs' excellent lectures on the physiology of plants, we read on page 723 [140]—‘In the true mosses almost any cell of the roots, leaves and shoot-axes, and even of the immature sporogonium, may grow out under favourable conditions, become rooted, form new shoots, and give rise to an independent living plant.' Since such plants produce germ-cells at a later period, we have here a case which requires the assumption that all or nearly all cells must contain germ-plasm.

The theory of the continuity of the germ-plasm seems to me to be still less disproved or even rendered improbable by the facts of the alternation of generations. If the germ-plasm may pass on from the egg into certain somatic cells of an individual, and if it can be further transmitted along certain lines, there is no difficulty in supposing that it may be transmitted through a second, third, or through any number of individuals produced from the former by budding. In fact, in the Hydroids, on which my theory of the continuity of the germ-plasm has been chiefly based, alternation of generations is the most important means of propagation.

II. The Significance of the Polar Bodies

We have already seen that the specific nature of a cell depends upon the molecular structure of its nucleus; and it follows from this conclusion that my theory is further, and as I believe strongly, supported, by the phenomenon of the expulsion of polar bodies, which has remained inexplicable for so long a time.

For if the specific molecular structure of a cell-body is caused and determined by the structure of the nucleoplasm, every kind of cell which is histologically differentiated must have a specific nucleoplasm. But the egg-cell of most animals, at any rate during the period of growth, is by no means an indifferent cell of the most primitive type. At such a period its cell-body has to perform quite peculiar and specific functions; it has to secrete nutritive substances of a certain chemical nature and physical constitution, and to store up this food-material in such a manner that it may be at the disposal of the embryo during its development. In most cases the egg-cell also forms membranes which are often characteristic of particular species of animals. The growing egg-cell is therefore histologically differentiated: and in this respect resembles a somatic cell. It may perhaps be compared to a gland-cell, which does not expel its secretion, but deposits it within its own substance [141]. To perform such specific functions it requires a specific cell-body, and the latter depends upon a specific nucleus. It therefore follows that the growing egg-cell must possess nucleoplasm of specific molecular structure, which directs the above-mentioned secretory functions of the cell. The nucleoplasm of histologically differentiated cells may be called histogenetic nucleoplasm, and the growing egg-cell must contain such a substance, and even a certain specific modification of it. This nucleoplasm cannot possibly be the same as that which, at a later period, causes embryonic development. Such development can only be produced by true germ-plasm of immensely complex constitution, such as I have previously attempted to describe. It therefore follows that the nucleus of the egg-cell contains two kinds of nucleoplasm:—germ-plasm and a peculiar modification of histogenetic nucleoplasm, which may be called ovogenetic nucleoplasm. This substance must greatly preponderate in the young egg-cell, for, as we have already seen, it controls the growth of the latter. The germ-plasm, on the other hand, can only be present in minute quantity at first, but it must undergo considerable increase during the growth of the cell. But in order that the germ-plasm may control the cell-body, or, in other words, in order that embryonic development may begin, the still preponderating ovogenetic nucleoplasm must be removed from the cell. This removal takes place in the same manner as that in which differing nuclear substances are separated during the ontogeny of the embryo: viz. by nuclear division, leading to cell-division. The expulsion of the polar bodies is nothing more than the removal of ovogenetic nucleoplasm from the egg-cell. That the ovogenetic nucleoplasm continues to greatly preponderate in the nucleus up to the very last, may be concluded from the fact that two successive divisions of the latter and the expulsion of two polar bodies appear to be the rule. If in this way a small part of the cell-body is expelled from the egg, the extrusion must in all probability be considered as an inevitable loss, without which the removal of the ovogenetic nucleoplasm cannot be effected.

This is my theory of the significance of polar bodies, and I do not intend to contrast it, in extenso, with the theories propounded by others; for such theories are well known and differ essentially from my own. All writers agree in supposing that something which would be an obstacle to embryonic development is removed from the egg; but opinions differ as to the nature of this substance and the precise reasons for its removal [142]. Some observers (e. g. Minot [143], van Beneden, and Balfour) regard the nucleus as hermaphrodite, and assume that in the polar bodies the male element is expelled in order to render the egg capable of fertilization. Others speak of a rejuvenescence of the nucleus, others again believe that the quantity of nuclear substance must be reduced in order to become equal to that of the generally minute sperm-nucleus, and that the proportions for nuclear conjugation are in this way adjusted.

The first view seems to me to be disproved by the fact that male as well as female qualities are transmitted by the egg-cell, while the sperm-cell also transmits female qualities. The germ-plasm of the nucleus of the egg cannot therefore be considered as female, and that of the sperm-nucleus cannot be considered as male: both are sexually indifferent. The last view has been recently formulated by Strasburger, who holds that the quantity of the idioplasm contained in the germ-nucleus must be reduced by one half, and that a whole nucleus is again produced by conjugation with the sperm-nucleus. Although I believe that the fundamental idea underlying this hypothesis is perfectly correct, viz. that the influence of each nucleus is as largely dependent upon its quantity as upon its quality, I must raise the objection that the decrease in quantity is not the explanation of the expulsion of polar bodies. The quantity of idioplasm contained in the germ-nucleus is, as a matter of fact, not reduced by one-half but by three-fourths, for two divisions take place one after the other. Thus by conjugation with the sperm-nucleus, which we may assume to be of the same size as the germ-nucleus, a nucleus is produced which can only contain half as much idioplasm as was present in the original germ-nucleus, before division. Strasburger's view leaves unexplained the question why the size of the germ-nucleus, before the expulsion of polar bodies, was thus twice as large; and even if we neglect the theory of ovogenetic nucleoplasm and assume that this larger nucleus was entirely made up of germ-plasm, it must be asked why the egg did not commence segmentation earlier. The theory which explains the sperm-cell as the vitalizing principle which starts embryonic development, like the spark which kindles the gunpowder, would indeed answer this question in a very simple manner. But Strasburger does not accept this theory, and holds, as I do, a very different view, which will be explained later on.

If, on the other hand, we assume that the germ-nucleus contains two different kinds of nucleoplasm, the question is answered quite satisfactorily. In treating of parthenogenesis, further on, I shall mention a fact which seems to me to furnish a real proof of the validity of this explanation; and, if we accept this fact for the present, it will be clear that the simple explanation now offered of phenomena which are otherwise so difficult to understand, would also largely support the theory of the continuity of the germ-plasm. Such an explanation would, above all, very clearly demonstrate the co-existence of two nucleoplasms with different qualities in one and the same nucleus. My theory must stand or fall with this explanation, for if the latter were disproved, the continuity of the germ-plasm could not be assumed in any instance, not even in the simplest cases, where, as in Diptera, the germ-cells are the first-formed products of embryonic development. For even in these insects the egg possesses a specific histological character which must depend upon a specifically differentiated nucleus. If then two kinds of nucleoplasm are not present, we must assume that in such cases the germ-plasm of the newly formed germ-cells, which has passed on unchanged from the segmentation nucleus, is at once transformed entirely into ovogenetic nucleoplasm, and must be re-transformed into germ-plasm at a later period when the egg is fully mature. We could not in any way understand why such a re-transformation requires the expulsion of part of the nuclear substance.

At all events, my explanation is simpler than all others, in that it only assumes a single transformation of part of the germ-plasm, and not the later re-transformation of ovogenetic nucleoplasm into germ-plasm, which is so improbable. The ovogenetic nucleoplasm must possess entirely different qualities from the germ-plasm; and, above all, it does not readily lead to division, and thus we can better understand the fact, in itself so remarkable, that egg-cells do not increase in number by division, when they have assumed their specific structure, and are controlled by the ovogenetic nucleoplasm. The tendency to nuclear division, and consequently to cell-division, is not produced until changes have to a certain extent taken place in the mutual relation between the two kinds of nucleoplasm contained in the germ-nucleus. This change is coincident with the attainment of maximum size by the body of the egg-cell. Strasburger, supported by his observations on Spirogyra, concludes that the stimulus towards cell-division emanates from the cell-body; but the so-called centres of attraction at the poles of the nuclear spindle obviously arise under the influence of the nucleus itself, even if we admit that they are entirely made up of cytoplasm. But this point has not been decided upon, and we may presume that the so-called ‘Polkörperchen' of the spindle (Fol) are derived from the nucleus, although they are placed outside the nuclear membrane [144]. Many points connected with this subject are still in a state of uncertainty, and we must abstain from general conclusions until it has been possible to demonstrate clearly the precise nature of certain phenomena attending indirect nuclear division, which still remain obscure in spite of the efforts of so many excellent observers. We cannot even form a decided opinion as to whether the chromatin or the achromatin of the nuclear thread is the real idioplasm. But although these points are not yet thoroughly understood, we are justified in maintaining that the cell enters upon division under the influence of certain conditions of the nucleus, although the latter are invisible until cell-division has already commenced.

I now pass on to examine my hypothesis as to the significance of the formation of polar bodies, in the light of those ascertained facts which bear upon it.

If the expulsion of the polar bodies means the removal of the ovogenetic nucleoplasm after the histological differentiation of the egg-cell is complete, we must expect to find polar bodies in all species except those in which the egg-cell has remained in a primitive undifferentiated condition, if indeed such species exist. Wherever the egg-cell assumes the character of a specialized cell, e.g. in the attainment of a particular size or constitution, in the admixture of food-yolk, or the formation of membranes, it must also contain ovogenetic nucleoplasm, which must ultimately be removed if the germ-plasm is to gain control over the egg-cell. It does not signify at all, in this respect, whether the egg is or is not destined for fertilization.

If we examine the Metazoa in regard to this question, we find that polar bodies have not yet been discovered in sponges [145], but this negative evidence is no proof that they are really absent. In all probability, no one has ever seriously endeavoured to find them, and there are perhaps difficulties in the way of the proofs of their existence, because the egg-cell lies free for a long time and even moves actively in the tissue of the mesogloea. We might expect that the formation of polar bodies takes place here, as in all other instances, when the egg becomes mature, that is, at a time when the eggs are already closely enveloped in the sponge tissue. At all events the eggs of sponges, as far as they are known, attain a specific nature, in the possession of a peculiar cell-body, frequently containing food-yolk, and of the nucleus which is characteristic of all animal eggs during the process of growth. Hence we cannot doubt the presence of a specific ovogenetic nucleoplasm, and must therefore also believe that it is ultimately removed in the polar bodies.

In other Coelenterata, in worms, echinoderms, and in molluscs polar bodies have been described, as well as in certain Crustacea, viz. in Balanus  by Hoek and in Cetochilus septentrionale  by Grobben. The latter instance appears to be quite trustworthy, but there is some doubt as to the former and also as regards Moina  (a Daphnid), in which Grobben found a body, which he considered to be a polar body, on the upper pole of an egg which was just entering upon segmentation. In insects polar bodies have not been described up to the present time [146], and only in a few cases in Vertebrata, as in Petromyzon  by Kupffer and Benecke.

It must be left to the future to decide whether the expulsion of polar bodies occurs in those large groups of animals in which they have not been hitherto discovered. The fact, however, that they have not been so discovered cannot be urged as an objection to my theory, for we do not know a priori  whether the removal of the ovogenetic nucleoplasm has not been effected in the course of phylogeny in some other and less conspicuous manner. The cell-body of the polar globules is so minute in many eggs that it was a long time before the cellular nature of these structures was recognized [147]; and it is possible that their minute size may point to the fact that a phyletic process of reduction has taken place, to the end that the egg may be deprived of as little material as possible. It is at all events proved that in all Metazoan groups the nucleus undergoes changes during the maturation of the egg, which are entirely similar to those which lead to the formation of polar bodies in those eggs which possess them. In the former instances it is possible that nature has taken a shortened route to gain the same end.

It would be an important objection if it could be shown that no process corresponding to the expulsion of polar bodies takes place in the male germ-cells, for it is obvious that here also we should, according to my theory, expect such a process to occur. The great majority of sperm-cells differ so widely in character from the ordinary indifferent (i. e. undifferentiated) cells, that they are evidently histologically differentiated in a very high degree, and hence the sperm-cells, like the yolk-forming germ-cells, must possess a specific nuclear substance. The majority of sperm-cells therefore resemble the somatic cells in that they have a specific histological structure, but their characteristic form has nothing to do with their fertilizing power, viz. with their power of being the bearers of germ-plasm. Important as this structure is, in order to render it possible that the egg-cell may be approached and penetrated, it has nothing to do with the property of the sperm-cell to transmit the qualities of the species and of the individual to the following generation. The nuclear substance which causes such a cell to assume the appearance of a thread, or a stellate form (in Crustacea), or a boomerang form (present in certain Daphnids), or a conical bullet shape (Nematodes), cannot possibly be the same nuclear substance as that which, after conjugation with the egg-cell, contains in its molecular structure the tendency to build up a new Metazoon of the same kind as that by which it was produced. We must, therefore, conclude that the sperm-cell also contains two kinds of nucleoplasm, namely, germ-plasm and spermogenetic nucleoplasm.

It is true that we cannot say a priori  whether the influence exercised on the sperm-cell by the spermogenetic nucleoplasm might not be eliminated by some means other than its removal from the cell. It is conceivable, for instance, that this substance may be expelled from the nucleus, but may remain in the cell-body, where it is in some way rendered powerless. We do not yet really know anything of the essential conditions of nuclear division, and it is quite impossible to bring forward any facts in support of my previous suggestion. The germ-plasm is supposed to be present in the nucleus of the growing egg-cell in smaller quantity than the ovogenetic nucleoplasm, and the germ-plasm gradually increases in quantity: thus when the egg has attained its maximum size, the opposition between the two different kinds of nucleoplasm becomes so marked, in consequence of the alteration in their quantitative relations, that their separation, viz. nuclear division, results. But although we are not able to distinguish, by any visible characteristics, the different kinds of nucleoplasm which may be united in one nuclear thread, the assumption that the influence of each kind bears a direct proportion to its quantity is the most obvious and natural one. The tendency of the germ-plasm contained in the nucleus cannot make itself felt so long as an excess of ovogenetic nucleoplasm is also present. We may imagine that the effects of the two different kinds of nucleoplasm are combined to produce a resultant effect; but when the two influences exerted upon the cell are nearly opposed, only the stronger can make itself felt, and in such a case the latter must exceed the former in quantity, because part of it is as it were neutralized by the other nucleoplasm working in an opposite direction. This metaphorical representation may give us a clue to explain the fact that the ovogenetic nucleoplasm comes to exceed the germ-plasm in quantity. For obviously these two kinds of nucleoplasm exert opposite tendencies in at least one respect. The germ-plasm tends to effect the division of the cell into the two first segmentation spheres; the ovogenetic nucleoplasm, on the other hand, possesses a tendency towards the growth of the cell-body without division. Hence the germ-plasm cannot make itself felt, and is not able to expel the ovogenetic nucleoplasm until it has reached such a relative size as enables it to successfully oppose the latter.

Applying these ideas to the sperm-cells we must see whether the expulsion of part of the nuclear substance, viz. of the spermogenetic nucleoplasm, corresponding to the ovogenetic nucleoplasm, takes place in them also.

As far as we can judge from thoroughly substantiated observations such phenomena are indeed found in many cases, although they appear to be different from those occurring in the egg-cell, and cannot receive quite so certain an interpretation.

The attempt to prove that a process similar to the expulsion of polar bodies takes place in the formation of sperm-cells has already been made by those observers who regard such expulsion as the removal of the male element from the egg, thus leading to sexual differentiation; for such a theory also requires the removal of part of the nuclear substance from the maturing sperm-cell. Thus, according to E. van Beneden and Ch. Julin, the cells which, in Ascaris, produce the spermatogonia (mother-cells of the sperm-cells), expel certain elements from their nuclear plate, a phenomenon which has not been hitherto observed in any other animal, and even in this instance has only been inferred and not directly observed. Moreover the sperm-cells have not attained their specific form (conical bullet-shaped) at the time when this expulsion takes place from the spermatogonia, and we should expect that the spermogenetic nucleoplasm would not be removed until it has completed its work, viz. not until the specific shape of the sperm-cell has been attained. We might rather suppose that phenomena explicable in this way are to be witnessed in those sperm-blastophores (mother-cells of sperm-cells) which, as has been known for a long time, are not employed in the formation of the nuclei of sperm-cells, but for the greater part remain at the base of the latter and perish after their maturation and separation. In this case an influence might be exerted by these nuclei upon the specific form of the sperm-cells, for the former arise and develope in the form of bundles of spermatozoa in the interior of the mother-cell.

It has been already shown in many groups of animals that parts of the sperm-mother-cells [148] perish, without developing into sperm-cells, as in Selachians, in the frog, in many worms and snails, and also in mammals (Blomfield). But the attention of observers has been directed to that part of the cell-body which is not used in the formation of sperm-cells, rather than to the nucleus; and the proof that part of the nucleus also perishes is still wanting in many of these cases. Fresh investigation must decide whether the nucleus of the sperm-mother-cell perishes as a general rule, and whether part of the nucleus is rendered powerless in some other way, where such mother-cells do not exist. Perhaps the paranucleus (Nebenkern) of the sperm-cell, first described by La Valette St. George, and afterwards found in many animals of very different groups, is the analogue of the polar body. It is true that this so-called paranucleus is now considered as a condensed part of the cell-body, but we must remember that it has been hitherto a question whether the head of the spermatozoon is formed from the nucleus of the cell or from the paranucleus; and that the observers who held the former view were in consequence obliged to regard the paranucleus as a product of the cell-body. But according to the most recent investigations of Fol [149], Roule [150], Balbiani [151], and Will [152], upon the formation of the follicular epithelium in the ovary of different groups, it is not improbable that parts of the nucleus may become detached without passing through the process of karyokinesis. Thus it is very possible that the paranucleus may be a product of the main nucleus and not a condensed part of the cell-body. This view is supported by its behaviour with staining reagents, while the other view, that it arises from the cell-substance, is not based upon direct observation. Consequently future investigation must decide whether the paranucleus is to be considered as the spermogenetic nucleoplasm expelled from the nucleus. But even if this question is answered in the affirmative, we should still have to explain why this nuclear substance, remaining in the cell-body, does not continue to exercise any control over the latter.

Strasburger has recently enumerated a large number of cases from different groups of plants, in which the maturation of both male and female germ-cells is accompanied by phenomena similar to the expulsion of polar bodies. In this respect the phenomena occurring in the pollen-grains of Phanerogams bear an astonishing resemblance to the maturation of the animal egg. For instance, in the larch, the sperm-mother-cell divides three times in succession, the products of division being very unequal on each occasion; and exactly as in the case of polar bodies, the three small so-called vegetative cells shrink rapidly after separation, and have no further physiological value. According to Strasburger, the so-called ‘ventral canal-cell,' which, in mosses, ferns, and Conifers, separates from the female germ-cell, reminds us, in every way, of the polar bodies of animal eggs. Furthermore, the spermatozoids in the mosses and vascular cryptogams throw off a small vesicle before performing their functions [153]. On the other hand the equivalents of ‘polar bodies' (the ‘ventral canal-cells') are said to be absent in the Cycads, although these are so nearly allied to Conifers. Furthermore, ‘no phenomenon occurs in the oospheres (ova) of Angiosperms which can be compared to the formation of polar bodies.' Strasburger therefore concludes that the separation of certain parts from the germ-cells is not in all cases necessary for maturation, and that such phenomena are not fundamental, like those of fertilization, which must always take place along the same morphological lines. He further concludes that the former phenomena are only necessary in the case of the germ-cells of certain organisms, in order to bring the nuclei destined for the sexual act into the physiological condition necessary for its due performance.

I am unwilling to abandon the idea that the expulsion of the histogenetic parts of the nuclear substance, during the maturation of germ-cells, is also a general phenomenon in plants; for the process appears to be fundamental, while the argument that it has not been proved to occur universally is only of doubtful value. The embryo-sac of Angiosperms is such a complex structure that it seems to me to be possible (as it does to Strasburger) that ‘processes which precede the formation of the egg-cell have borne relation to the sexual differentiation of the nucleus of the egg.' Besides, it is possible that the vegetable egg-cell may, in certain cases, possess so simple a structure and so small a degree of histological specialization, that it would not be necessary for it to contain any specific histogenetic nucleoplasm: thus it would consist entirely of germ-plasm from the first. In such cases, of course, its maturation would not be accompanied by the expulsion of somatic nucleoplasm.

I have hitherto abstained from discussing the question as to whether the process of the formation of polar bodies may require an interpretation which is entirely different from that which I have given it, whether it may receive a purely morphological interpretation.

In former times it could only be regarded as of purely phyletic significance: it could only be looked upon as the last remnant of a process which formerly possessed some meaning, but which is now devoid of any physiological importance. We are indeed compelled to admit that a process does occur in connexion with the true polar bodies of animal eggs, which we cannot explain on physiological grounds; I mean the division of the polar bodies after they have been expelled from the egg. In many animals the two polar bodies divide again after their expulsion, so as to form four bodies, which distinctly possess the structure of cells, as Trinchese observed in the case of gastropods. But, in the first place, this second division does not always take place, and, secondly, it is very improbable that a process which occurs during the first stage of ontogeny, or more properly speaking, before the commencement of ontogeny, and which is, therefore, a remnant of some excessively ancient phyletic stage, would have been retained up to the present day unless it possessed some very important physiological significance. We may safely maintain that it would have disappeared long ago if it had been without any physiological importance. Relying on our knowledge of the slow and gradual, although certain, disappearance, in the course of phylogeny, of organs which have lost their functions, and of processes which have become meaningless, we are compelled to regard the process of the formation of polar bodies as of high physiological importance. But this view does not exclude the possibility that the process possessed a morphological meaning also, and I believe that we are quite justified in attempting (as Bütschli [154] has recently done) to discover what this morphological meaning may have been.

Should it be finally proved that the expulsion of polar bodies is nothing more than the removal of histogenetic nucleoplasm from the germ-cell, the opinion (which is so intimately connected with the theory of the continuity of the germ-plasm) that a re-transformation of specialised idioplasm into germ-plasm cannot occur, would be still further confirmed; for we do not find that any part of an organism is thrown away simply because it is useless: organs that have lost their functions are re-absorbed, and their material is thus employed to assist in building up the organism.

III. On the Nature of Parthenogenesis

It is well known that the formation of polar bodies has been repeatedly connected with the sexuality of germ-cells, and that it has been employed to explain the phenomena of parthenogenesis. I may now, perhaps, be allowed to develope the views as to the nature of parthenogenesis at which I have arrived under the influence of my explanation of polar bodies.

The theory of parthenogenesis adopted by Minot and Balfour is distinguished by its simplicity and clearness, among all other interpretations which had been hitherto offered. Indeed, their explanation follows naturally and almost as a matter of course, if the assumption made by these observers be correct, that the polar body is the male part of the hermaphrodite egg-cell. An egg which has lost its male part cannot develope into an embryo until it has received a new male part in fertilization. On the other hand, an egg which does not expel its male part may develope without fertilization, and thus we are led to the obvious conclusion that parthenogenesis is based upon the non-expulsion of polar bodies. Balfour distinctly states ‘that the function of forming polar cells has been acquired by the ovum for the express purpose of preventing parthenogenesis [155].'

It is obvious that I cannot share this opinion, for I regard the expulsion of polar bodies as merely the removal of the ovogenetic nucleoplasm, on which depended the development of the specific histological structure of the egg-cell. I must assume that the phenomena of maturation in the parthenogenetic egg and in the sexual egg are precisely identical, and that in both, the ovogenetic nucleoplasm must in some way be removed before embryonic development can begin.

Unfortunately the actual proof of this assumption is not so complete as might be desired. In the first place, we are as yet uncertain whether polar bodies are or are not expelled by parthenogenetic eggs [156]; for in no single instance has such expulsion been established beyond doubt. It is true that this deficiency does not afford any support to the explanation of Minot and Balfour, for in all cases in which polar bodies have not been found in parthenogenetic eggs, these structures are also absent from the eggs which require fertilization in the same species. But although the expulsion of polar bodies in parthenogenesis has not yet been proved to occur, we must assume it to be nearly certain that the phenomena of maturation, whether connected or unconnected with the expulsion of polar bodies, are the same in the eggs which develope parthenogenetically and in those which are capable of fertilization, in one and the same species. This conclusion depends, above all, upon the phenomena of reproduction in bees, in which, as a matter of fact, the same egg may be fertilized or may develope parthenogenetically, as I shall have occasion to describe in greater detail at a later period.

Hence when we see that the eggs of many animals are capable of developing without fertilization, while in other animals such development is impossible, the difference between the two kinds of eggs must rest upon something more than the mode of transformation of the nucleus of the germ-cell into the first segmentation nucleus. There are, indeed, facts which distinctly point to the conclusion that the difference is based upon quantitative and not qualitative relations. A large number of insects are exceptionally reproduced by the parthenogenetic method, e. g. in Lepidoptera. Such development does not take place in all the eggs laid by an unfertilized female, but only in part, and generally a small fraction of the whole, while the rest die. But among the latter there are some which enter upon embryonic development without being able to complete it, and the stage at which development may cease also varies. It is also known that the eggs of higher animals may pass through the first stages of segmentation without having been fertilized. This was shown to be the case in the egg of the frog by Leuckart [157], in that of the fowl by Oellacher [158], and even in the egg of mammals by Hensen [159].

Hence in such cases it is not the impulse to development, but the power to complete it, which is absent. We know that force is always bound up with matter, and it seems to me that such instances are best explained by the supposition that too small an amount of that form of matter is present, which, by its controlling agency, effects the building-up of the embryo by the transformation of mere nutritive material. This substance is the germ-plasm of the segmentation nucleus, and I have assumed above that it is altered in the course of ontogeny by changes which arise from within, so that when sufficient nourishment is afforded by the cell-body, each succeeding stage necessarily results from the preceding one. I believe that changes arise in the constitution of the nucleoplasm at each cell-division which takes place during the building-up of the embryo, changes which either correspond or differ in the two halves of each nucleus. If, for the present, we neglect the minute amount of unchanged germ-plasm which is reserved for the formation of the germ-cells, it is clear that a great many different stages in the development of somatic nucleoplasm are thus formed, which may be denominated as stages 1, 2, 3, 4, &c., up to n. In each of these stages the cells differ more as development proceeds, and as the number by which the stage is denominated becomes higher. Thus, for instance, the two first segmentation spheres would represent the first stage of somatic nucleoplasm, a stage which may be considered as but slightly different in its molecular structure from the nucleoplasm of the segmentation nucleus; the four first segmentation spheres would represent the second stage; the succeeding eight spheres the third, and so on. It is clear that at each successive stage the molecular structure of the nucleoplasm must be further removed from that of the germ-plasm, and that, at the same time, the cells of each successive stage must also diverge more widely among themselves in the molecular structure of their nucleoplasm. Early in development each cell must possess its own peculiar nucleoplasm, for the further course of development is peculiar to each cell. It is only in the later stages that equivalent or nearly equivalent cells are formed in large numbers, cells in which we must also suppose the existence of equivalent nucleoplasm.

If we may assume that a certain amount of germ-plasm must be contained in the segmentation nucleus in order to complete the whole process of the ontogenetic differentiation of this substance; if we may further assume that the quantity of germ-plasm in the segmentation nucleus varies in different cases; then we should be able to understand why one egg can only develope after fertilization, while another can begin its development without fertilization, but cannot finish it, and why a third is even able to complete its development. We should also understand why one egg only passes through the first stages of segmentation and is then arrested, while another reaches a few more stages in advance, and a third developes so far that the embryo is nearly completely formed. These differences would depend upon the extent to which the germ-plasm, originally present in the egg, was sufficient for the development of the latter; development will be arrested as soon as the nucleoplasm is no longer capable of producing the succeeding stage, and is thus unable to enter upon the following nuclear division.

From a general point of view such a theory would explain many difficulties, and it would render possible an explanation of the phyletic origin of parthenogenesis, and an adequate understanding of the strange and often apparently abrupt and arbitrary manner of its occurrence. In my works on Daphnidae  I have already laid especial stress upon the proposition that parthenogenesis in insects and Crustacea certainly cannot be an ancestral condition which has been transmitted by heredity, but that it has been derived from a sexual condition. In what other way can we explain the fact that parthenogenesis is present in certain species or genera, but absent in others closely allied to them; or the fact that males are entirely wanting in species of which the females possess a complete apparatus for fertilization? I will not repeat all the arguments with which I attempted to support this conclusion [160]. Such a conclusion may be almost certainly accepted for the Daphnidae, because parthenogenesis does not occur in their still living ancestors, the Phyllopods, and especially the Estheridae. In Daphnidae  the cause and object of the phyletic development of parthenogenesis may be traced more clearly than in any other group of animals. In Daphnidae  we can accept the conclusion with greater certainty than in all other groups, except perhaps the Aphidae, that parthenogenesis is extremely advantageous to species in certain conditions of life; and that it has only been adopted when, and as far as, it has been beneficial; and further, that at least in this group parthenogenesis became possible, and was adopted, in each species as soon as it became useful. Such a result can be easily understood if it is only the presence of more or less germ-plasm which decides whether an egg is, or is not, capable of development without fertilization.

If we now examine the foundations of this hypothesis we shall find that we may at once accept one of its assumptions, viz. that fluctuations occur in the quantity of germ-plasm in the segmentation nucleus; for there can never be absolute equality in any single part of different individuals. As soon therefore as these fluctuations become so great that parthenogenesis is produced, it may become, by the operation of natural selection, the chief mode of reproduction of the species or of certain generations of the species. In order to place this theory upon a firm basis, we have simply to decide whether the quantity of germ-plasm contained in the segmentation nucleus is the factor which determines development; although for the present it will be sufficient if we can render this view to some extent probable, and show that it is not in contradiction with established facts.

At first sight this hypothesis seems to encounter serious difficulties. It will be objected that neither the beginning nor the end of embryonic development can possibly depend upon the quantity of nucleoplasm in the segmentation nucleus, since the amount may be continually increased by growth; for it is well known that during embryonic development the nuclear substance increases with astonishing rapidity. By an approximate calculation I found [161] that, in the egg of a Cynips, the quantity of nuclear substance present at the time when the blastoderm was about to be formed, and when there were twenty-six nuclei, was even then seven times as great as the quantity which had been contained in the segmentation nucleus. How then can we imagine that embryonic development would ever be arrested from want of nuclear substance, and if such deficiency really acted as an arresting force, how then could development begin at all? We might suppose that when germ-plasm is present in sufficient quantity to start segmentation, it must also be sufficient to complete the development; for it grows continuously, and must presumably always possess a power equal to that which it possessed at the beginning, and which was just sufficient to start the process of segmentation. If at each ontogenetic stage, the quantity of nucleoplasm is just sufficient to produce the following stage, we might well imagine that the whole ontogeny would necessarily be completed.

The flaw in this argument lies in the erroneous assumption that the growth of nuclear substance is, when the quality of the nucleus and the conditions of nutrition are equal, unlimited and uncontrolled. The intensity of growth must depend upon the quantity of nuclear substance with which growth and the phenomena of segmentation commenced. There must be an optimum quantity of nucleoplasm with which the growth of the nucleus proceeds most favourably and rapidly, and this optimum will be represented in the normal size of the segmentation nucleus. Such a size is just sufficient to produce, in a certain time and under certain external conditions, the nuclear substance necessary for the construction of the embryo, and to start the long series of cell-divisions. When the segmentation nucleus is smaller, but large enough to enter upon segmentation, the nuclei of the two first embryonic cells will fall rather more below the normal size, because the growth of the segmentation nucleus during and after division will be less rapid on account of its unusually small size. The succeeding generations of nuclei will depart more and more from the normal size in each respective stage, because they do not pass into a resting-stage during embryonic development, but divide again immediately after their formation. Hence nuclear growth would become less vigorous as the nuclei fell more and more below the optimum size, and at last a moment would arrive when they would be unable to divide, or would be at least unable to control the cell-body in such a manner as to lead to its division.

The first event of importance for embryonic development is the maturation of the egg, i. e. the transformation of the nucleus of the germ-cell into a nuclear spindle and the removal of the ovogenetic nucleoplasm by the separation of polar bodies, or by some analogous process. There must be some cause for this separation, and I have already tried to show that it may lie in the quantitative relations which obtain between the two kinds of nucleoplasm contained in the nucleus of the egg. I have suggested that the germ-plasm, at first small in quantity, undergoes a gradual increase, so that it can finally oppose the ovogenetic nucleoplasm. I will not further elaborate this suggestion, for the ascertained facts are insufficient for the purpose. But the appearances witnessed in nuclear division indicate that there are opposing forces, and that such a contest is the motive cause of division; and Roux [162] may be right in referring the opposition to electrical forces. However this may be, it is perfectly certain that the development of this opposition is based upon internal conditions arising during growth in the nucleus itself. The quantity of nuclear thread cannot by itself determine whether the nucleus can or cannot enter upon division; if so, it would be impossible for two divisions to follow each other in rapid succession, as is actually the case in the separation of the two polar bodies, and also in their subsequent division. In addition to the effects of quantity, the internal conditions of the nucleus must also play an important part in these phenomena. Quantity alone does not necessarily produce nuclear division, or the nucleus of the egg would divide long before maturation is complete, for it contains much more nucleoplasm than the female pronucleus, which remains in the egg after the expulsion of the polar bodies, and which is in most cases incapable of further division. But the fact that segmentation begins immediately after the conjugation of male and female pronuclei, also shows that quantity is an essential requisite. The effect of fertilization has been represented as analogous to that of the spark which kindles the gunpowder. In the latter case an explosion ensues, in the former segmentation begins. Even now, many authorities are inclined to refer the polar repulsion manifested in the nuclear division which immediately follows fertilization, to the antagonism between male and female elements. But, according to the important discoveries of Flemming and van Beneden, the polar repulsion in each nuclear division is not based on the antagonism between male and female loops, but depends upon the antagonism and mutual repulsion between the two halves of the same loop. The loops of the father and those of the mother remain together and divide together throughout the whole ontogeny.

What can be the explanation of the fact that nuclear division follows immediately after fertilization, but that without fertilization it does not occur in most cases? There is only one possible explanation, viz. the fact that the quantity of the nucleus has been suddenly doubled, as the result of conjugation. The difference between the male and female pronuclei cannot serve as an explanation, even though the nature of this difference is entirely unknown, because polar repulsion is not developed between the male and female halves of the nucleus, but within each male and each female half. We are thus forced to conclude that increase in the quantity of the nucleus affords an impulse for division, the disposition towards it being already present. It seems to me that this view does not encounter any theoretical difficulties, and that it is an entirely feasible hypothesis to suppose that, besides the internal conditions of the nucleus, its quantitative relation to the cell-body must be taken into especial account. It is imaginable, or perhaps even probable, that the nucleus enters upon division as soon as its idioplasm has attained a certain strength, quite apart from the supposition that certain internal conditions are necessary for this end. As above stated, such conditions may be present, but division may not occur because the right quantitative relation between nucleus and cell-body, or between the different kinds of nuclear idioplasm, has not been established. I imagine that such a quantitative deficiency exists in an egg, which, after the expulsion of the ovogenetic nucleoplasm in the polar bodies, requires fertilization in order to begin segmentation. The fact that the polar bodies were expelled proves that the quantity of the nucleus was sufficient to cause division, while afterwards it was no longer sufficient to produce such a result.

This suggestion will be made still clearer by an example. In Ascaris megalocephala  the nuclear substance of the female pronucleus forms two loops, and the male pronucleus does the same; hence the segmentation nucleus contains four loops, and this is also the case with the first segmentation spheres. If we suppose that in embryonic development, the first nuclear division requires such an amount of nuclear substance as is necessary for the formation of four loops,—it follows that an egg, which can only form two or three loops from its nuclear reticulum, would not be able to develope parthenogenetically, and that not even the first division would take place. If we further suppose that, while four loops are sufficient to start nuclear division, these loops must be of a certain size and quantity in order to complete the whole ontogeny (in a certain species), it follows that eggs possessing a reticulum which contains barely enough nuclear substance to divide into four segments, would be able to produce the first division and perhaps also the second and third, or some later division, but that at a certain point during ontogeny, the nuclear substance would become insufficient, and development would be arrested. This will occur in eggs which enter upon development without fertilization, but are arrested before its completion. One might compare this retardation leading to the final arrest of development, to a railway train which is intended to meet a number of other trains at various junctions, and which can only travel slowly because of some defect in the engine. It will be a little behind time at the first junction, but it may just catch the train, and it may also catch the second or even the third; but it will be later at each successive junction, and will finally arrive too late for a certain train; and after that it will miss all the trains at the remaining junctions. The nuclear substance grows continuously during development, but the rate at which it increases depends upon the nutritive conditions together with its initial quantity. The nutritive changes during the development of an egg depend upon the quantity of the cell-body which was present at the outset, and which cannot be increased. If the quantity of the nuclear substance is rather too small at the beginning, it will become more and more insufficient in succeeding stages, as its growth becomes less vigorous, and differs more from the standard it would have reached if the original quantity had been normal. Consequently it will gradually fall more and more short of the normal quantity, like the train which arrives later and later at each successive junction, because its engine, although with the full pressure of steam, is unable to attain the normal speed.

It will be objected that four loops cannot be necessary for nuclear division in Ascaris, since such division takes place in the formation of the polar bodies, resulting in the appearance of the female pronucleus with only two loops. But this fact only shows that the quantity of nuclear substance necessary for the formation of four loops is not necessary for all nuclear divisions; it does not disprove the assumption that such a quantity is required for the division of the segmentation nucleus. In addition to these considerations we must not leave the substance of the cell-body altogether out of account, for, although it is not the bearer of the tendencies of heredity, it must be necessary for every change undergone by the nucleus, and it surely also possesses the power of influencing changes to a large extent. There must be some reason for the fact that in all animal eggs with which we are acquainted, the nucleus moves to the surface of the egg at the time of maturation, and there passes through its well-known transformation. It is obvious that it is there subjected to different influences from those which would have acted upon it in the centre of the cell-body, and it is clear that such an unequal cell-division as takes place in the separation of the polar bodies could not occur if the nucleus remained in the centre of the egg.

This explanation of the necessity for fertilization does not exclude the possibility, that, under certain circumstances, the substance of the egg-nucleus may be larger, so that it is capable of forming four loops. Eggs which thus possess sufficient nucleoplasm, viz. germ-plasm, for the formation of the requisite four loops of normal size, (namely, of the size which would have been produced by fertilization), can and must develope by the parthenogenetic method.

Of course the assumption that four loops must be formed has only been made for the sake of illustration. We do not yet know whether there are always exactly four loops in the segmentation nucleus [163]. I may add that, although the details by which these considerations are illustrated are based on arbitrary assumptions, the fundamental view that the development of the egg depends, ceteris paribus, upon the quantity of nuclear substance, is certainly right, and follows as a necessary conclusion from the ascertained facts. It is not unlikely that such a view may receive direct proof in the results of future investigations. Such proof might for instance be forthcoming if we were to ascertain, in the same species, the number of loops present in the segmentation nucleus of fertilization, as compared with those present in the segmentation nucleus of parthenogenesis.

The reproductive process in bees will perhaps be used as an argument against my theory. In these insects, the same egg will develope into a female or male individual, according as fertilization has or has not taken place, respectively. Hence, one and the same egg is capable of fertilization, and also of parthenogenetic development, if it does not receive a spermatozoon. It is in the power of the queen-bee to produce male or female individuals: by an act of will she decides whether the egg she is laying is to be fertilized or unfertilized. She ‘knows beforehand'[164] whether an egg will develope into a male or a female animal, and deposits the latter kind in the cells of queens and workers, the former in the cells of drones. It has been shown by the discoveries of Leuckart and von Siebold that all the eggs are capable of developing into male individuals, and that they are only transformed into ‘female eggs' by fertilization. This fact seems to be incompatible with my theory as to the cause of parthenogenesis, for if the same egg, possessing exactly the same contents, and above all the same segmentation nucleus, may develope sexually or parthenogenetically, it appears that the power of parthenogenetic development must depend on some factor other than the quantity of germ-plasm.

Although this appears to be the case, I believe that my theory encounters no real difficulty. I have no doubt whatever, that the same egg may develope with or without fertilization. From a careful study of the numerous excellent investigations upon this point which have been conducted in a particularly striking manner by Bessels [165] (in addition to the observers quoted above), I have come to the conclusion that the fact is absolutely certain. It must be candidly admitted that the same  egg will develope into a drone when not fertilized, or into a worker or queen when fertilized. One of Bessels' experiments is sufficient to prove this assertion. He cut off the wings of a young queen and thus rendered her incapable of taking ‘the nuptial flight.' He then observed that all the eggs which she laid developed into male individuals. This experiment was made in order to prove that drones are produced by unfertilized eggs; but it also proves that the assertion mentioned above is correct, for the eggs which ripen first and are therefore first laid, would have been fertilized had the queen been impregnated. The supposition that, at certain times, the queen produces eggs requiring fertilization, while at other times her eggs develope parthenogenetically, is quite excluded by this experiment; for it follows from it, that the eggs must all be of precisely the same kind, and that there is no difference between the eggs which require fertilization and those which do not.

But does it therefore follow that the quantity of germ-plasm in the segmentation nucleus is not the factor which determines the beginning of embryonic development? I believe not. It can be very well imagined that the nucleus of the egg, having expelled the ovogenetic nucleoplasm, may be increased to the size requisite for the segmentation nucleus in one of two ways: either by conjugation with a sperm-nucleus, or by simply growing to double its size. There is nothing improbable in this latter assumption, and one is even inclined to inquire why such growth does not take place in all unfertilized eggs. The true answer to this question must be that nature generally pursues the sexual method of reproduction, and that the only way in which the general occurrence of parthenogenesis could be prevented, was by the production of eggs which remained sterile unless they were fertilized. This was effected by a loss of the capability of growth on the part of the egg-nucleus after it had expelled the ovogenetic nucleoplasm.

The case of the bee proves in a very striking manner that the difference between eggs which require fertilization, and those which do not, is not produced until after the maturation of the egg, and the removal of the ovogenetic nucleoplasm. The increase in the quantity of the germ-plasm cannot have taken place at any earlier period, or else the nucleus of the egg would always start embryonic development by itself, and the egg would probably be incapable of fertilization. For the relation between egg-nucleus and sperm-nucleus is obviously based upon the fact that each of them is insufficient by itself, and requires completion. If such completion had taken place at an early stage the egg-nucleus would either cease to exercise any attractive force upon the sperm-nucleus, or else conjugation would be effected, as in Fol's interesting experiments upon fertilization by many spermatozoa; and, as in these experiments, malformation of the embryo would result. In Daphnidae  I believe I have shown [166] that the summer-eggs are not only developed parthenogenetically, but also that they are never fertilized; and the explanation of this incapacity for fertilization may perhaps be found in the fact that their segmentation nucleus is already formed.

We may therefore conclude that, in bees, the nucleus of the egg, formed during maturation, may either conjugate with the sperm-nucleus, or else if no spermatozoon reaches the egg may, under the stimulus of internal causes, grow to double its size, thus attaining the dimensions of the segmentation nucleus. For our present purpose we may leave out of consideration the fact that in the latter case the individual produced is a male, and in the former case a female.

It is clear that such an increase in the germ-plasm must depend, to a certain extent, upon the nutrition of the nucleus, and thus indirectly upon the body of the egg-cell; but the increase must chiefly depend upon internal nuclear conditions, viz. upon the capability of growth. We must further assume that the latter condition plays the chief part in the process, for everywhere in the organic world the limit of growth depends upon the internal conditions of the growing body, and can only be altered to a small extent by differences of nutrition. The phyletic acquisition of the capability of parthenogenetic development must therefore depend upon an alteration in the capability of growth possessed by the nucleus of the egg.

This theory of parthenogenesis most nearly approaches Strasburger's views upon the subject, for he also explains the non-occurrence of parthenogenetic development by the insufficient quantity of nucleoplasm remaining in the egg after the expulsion of polar bodies. The former theory differs however in that the occurrence of parthenogenesis is supposed to be only due to an increase of this nucleoplasm to the normal size of the segmentation nucleus. Strasburger assumes that ‘specially favourable conditions of nutrition counteract the deficiency of nuclear idioplasm,' while it seems to me that nutrition must be considered as only of secondary importance. Thus in bees, as above stated, the same egg may develope parthenogenetically or after fertilization, the nucleus being subject to the same conditions of nutrition in both cases. Strasburger [167] considers that parthenogenesis may be interpreted by one of three possible explanations. First, he suggests that especially favourable nutrition may lead to the completion of the nuclear idioplasm. But if this assumption be made, we must ask why a part of the idioplasm should be previously expelled, when immediately afterwards the presence of an equal amount becomes necessary. Such a view can only be explained by the above-made assumption that the expelled nucleoplasm has a different constitution from that possessed by the nucleoplasm which is afterwards formed. It is true that we do not yet certainly know whether a polar body is expelled in eggs in which parthenogenesis occurs, but we do know that the egg of the bee passes through the same stages of maturation whether it is to be fertilized or not. I can hardly accept Strasburger's second suggestion, ‘that under some favourable conditions of nutrition half [or perhaps better, a quarter] of the idioplasm of the egg-nucleus is sufficient to start the processes of development in the cyto-idioplasm.' Finally, his third suggestion, ‘that the cyto-idioplasm, nourished by its surroundings and thus increased in quantity, compels the nucleus of the egg to enter upon division,' presupposes that the cell-body gives the impulse for nuclear division, a supposition which up to the present time remains at least unproved. The ascertained facts appear to me to indicate rather that the cell-body serves only as a medium for the nutrition of the nucleus, and Fol's recently mentioned observations, which have been especially quoted by Strasburger in support of his theories, seem to me to rather confirm my conclusions. If supernumerary sperm-nuclei penetrate into the egg, they may, under the nutritive influence of the cell-body, become centres of attraction, and may take the first step towards nuclear and cell-division by forming amphiasters. Such nuclei cannot control the whole cell-body and force it to divide, but each one of them, having grown to a certain size at the expense of the cell-body, makes its influence felt over a certain area. Strasburger is quite right in considering this process as a ‘partial parthenogenesis.' Such partial parthenogenesis presumably occurs in all egg-nuclei, but the latter cannot attain to complete parthenogenesis when, as in Fol's supernumerary sperm-nuclei, their powers of assimilation are insufficient to enable them to reach the requisite size. As before stated, the cell-body does not force the nucleus to divide, but vice versa. It would, moreover, be quite erroneous to suppose that parthenogenetic eggs must contain a larger amount of nutritive material in order to facilitate the growth of the nucleus. The parthenogenetic eggs of certain Daphnidae  (BythotrephesPolyphemus ) are very much smaller than the winter-eggs, which require fertilization, in the same species. It is also an error for Strasburger to conclude that ‘it has been established with certainty that favourable conditions of nutrition cause parthenogenetic development in Daphnidae, while unfavourable conditions cause the formation of eggs requiring fertilization.' It is true that Carl Düsing [168], in his notable work upon the origin of sex, has attempted, in a most ingenious manner, to prove, from my observations and experiments on the reproduction of Daphnidae, ‘that winter or summer-eggs are formed according to the nutritive condition of the ovary.' I do not, however, believe that he has succeeded in this attempt, and at all events it is quite clear that the validity of such conclusions is not fully established. I have observed that the maturing eggs break up in the ovaries and are absorbed in those Daphnidae  (Sida ) which are starved because sufficient food cannot be provided in captivity. Hence such animals live, as it were, at the expense of their descendants; but it would be quite erroneous to conclude with Düsing, from the similarity which such disappearing egg-follicles bear to the groups of germ-cells which normally break up in the formation of winter-eggs, that with a less degree of starvation winter-eggs would have been formed. Düsing further quotes my incidental remark that the formation of resting-eggs in Daphnia  has been especially frequent in aquaria ‘which had been for some time neglected, and in which it was found that a great increase in the number of individuals had taken place.' He is entirely wrong in concluding that there was any want of food in these neglected aquaria; and if I had foreseen that such conclusions would have been drawn, I might have easily guarded against them by adding that in these very aquaria an undisturbed growth of different algae was flourishing, so that there could have been no deficiency, but, on the contrary, a great abundance of nutritive material. I may add that since that time I have conducted some experiments directly bearing upon this question, by bringing virgin females as near to the verge of starvation as possible, but in no case did they enter upon sexual reproduction [169].

An author must have been to some extent misled by preconceived ideas when he is unable to see that the manner in which the two kinds of eggs are respectively formed, directly excludes the possibility of the origin of sexual eggs from the effects of deficient or poor nutrition. The resting eggs, which require fertilization, are always larger, and require for their formation far more nutritive material, than the parthenogenetic summer-eggs. In Moina, for instance, forty large food-cells are necessary for the formation of a resting egg, while a summer-egg only requires three. And Düsing is aware of these facts, and quotes them. How can the formation of resting eggs depend upon the effects of poor nutrition when food is most abundant at the very time of their formation? In all those species which inhabit lakes, sexual reproduction occurs towards the autumn, and in such cases the resting eggs are true winter-eggs, destined to preserve the species during the winter. But at no time of the year is the food of the Daphnidae  so abundant as in September and October, and frequently even until late in November (in South Germany). At this period of the year, the water is filled with flakes of animal and vegetable matter in a state of partial decomposition, thus affording abundant food for many species. It also swarms with a large number of species of Crustacea, Radiolaria, and Infusoria; and thus such Daphnids as the Polyphemidae  are also well provided for. Hence there is no deficiency in the supply of food. Any one who has used a fine net in our fresh waters at this time of the year must have been at first astonished at the enormous abundance of the lower forms of animal life; and he must have been much more astonished if he has been able to compare such results with the scanty population of the same localities in spring. But it is during the spring and summer that these very Daphnidae  reproduce themselves parthenogenetically. I am far from believing that my experiments on Daphnidae  are exhaustive and final, and I have stated this in my published writings on the subject; but it seems to me that I have established the fact that direct influences, whether of food or of temperature, acting upon single individuals, do not determine the kind of eggs which are to be produced; but that such a decisive influence is to be found in the indirect conditions of life, and especially in the average frequency of the recurrence of adverse circumstances which kill whole colonies at once, such as the winter cold, or the drying-up of small ponds in summer. It is unnecessary for me to controvert Düsing in detail, as I have already taken this course in the case of Herbert Spencer [170], who had also formed the hypothesis that diminished nutrition causes sexual reproduction.

One of my observations seems, indeed, to support such a view, but only when it is considered as an isolated example. I refer to the behaviour of the genus Moina. Females of this genus which possess sexual eggs in their ovaries, and which would have continued to produce such eggs if males had been present, enter in the absence of the latter upon the formation of parthenogenetic summer-eggs, that is, if the sexual eggs have not all been extruded, but have been re-absorbed in the ovary. At first sight, indeed, such a result appears to indicate that the increase in nutrition, produced by the breaking-up of the large winter-egg in the ovary, determines the formation of parthenogenetic eggs. This apparent conclusion seems to be further confirmed by the following fact. The transition from sexual to parthenogenetic reproduction only occurs in one species of Moina  (M. rectirostris ), but in this species it occurs always and without exception, while in the other species which I have investigated (M. paradoxa ), winter-eggs, when once formed, are always laid, and such females can never produce summer-eggs. But in spite of this fact, Düsing is mistaken when he explains the continuous formation of sexual eggs in the latter species as due to the absence of any great increase in the amount of nutrition, such as would have followed if the egg had broken up in the ovary. In many other Daphnidae  which have come under my notice, the females frequently enter again upon the formation of parthenogenetic summer-eggs, after having laid fertilized resting eggs, upon one or more occasions. This is the case, for instance, in all the species of Daphnia  with which I am acquainted, and such a fact at once proves that the abnormal increase in nutrition produced by the absorption of winter-eggs cannot be the cause of the succeeding parthenogenesis. It also supports the proof that a high or low nutritive condition of the whole animal can have nothing to do with the kind of eggs which are produced, for in the above-quoted instance, the nutrition has remained the same throughout, or at all events has not been increased. It is erroneous to always look for the explanation of the mode of egg-formation in the direct action of external causes. Of course there must be direct causes which determine that one germ shall become a winter-egg, and another a summer-egg; but such causes do not lie outside the animal, and have nothing to do with the nutritive condition of the ovary: they are to be found in those conditions which we are not at present able to analyze further, and which we must, in the meantime, call the specific constitution of the species. In the young males of Daphnidae  the testes have precisely the same appearance as the ovaries of the young females [171], but the former will, nevertheless, produce sperm-cells and not ova. In such cases the sex of the young individual can always be identified by the form of the first antenna and of the first thoracic appendage, both of which are always clawed in the male. But who can point to the direct causes which determine that the sexual cells shall become sperm-cells in this case, and not egg-cells? Does the determining cause depend on the conditions of nutrition? Or, again, in the females, can the state of nutrition determine that the third out of a group of four germ-cells shall become an egg-cell, and that the others shall break up to serve as its food?

It is, I think, clear that these are obvious instances of the general conclusion that the direct causes determining the direction of development in each case are not to be looked for in external conditions, but in the constitution of the organs concerned.

We arrive at a like conclusion when we consider the quality of the eggs which are produced. The constitution of one species of Moina  contains the cause which determines that each individual shall produce winter-eggs only, or summer-eggs only; while in another species the transition from the formation of sexual eggs to the formation of summer-eggs can take place, but only when the winter-egg remains unfertilized. The latter case appears to me to be notably a special adaptation, in this and other species, to the deficiency of males, which is apt to occur. At all events, it is obvious that it is an advantage that an unfertilized sexual egg shall not be lost to the organism. The re-absorption of the winter-egg is an arrangement which, without being the cause, is favourable to the production of summer-eggs.

This subject is by no means a simple one, as is proved by the behaviour of the small group of Daphnidae. Thus in some species, the winter-eggs are produced by purely sexual females, which never enter upon parthenogenesis; in others, the sexual females may take the latter course, but only when males are absent; in others, again, they regularly enter upon parthenogenesis. In my work on Daphnidae, I have attempted to show that their behaviour in this respect is associated with the various external conditions under which the different species live; and also that the ultimate occurrence of the sexual period, and finally the whole cyclical alternation of sexual and parthenogenetic reproduction, depend upon adaptation to certain external conditions of life.

With the aid of my hypothesis that the egg-nucleus is composed of ovogenetic nucleoplasm and germ-plasm, I can now attempt to give an approximate explanation of the nature and origin of the direct causes which determine the production, at one time of parthenogenetic summer-eggs, and at another time of winter-eggs, requiring fertilization. But in such an explanation I should also wish to include a consideration of the causes which determine the formation of the nutritive cells of the egg and of the sperm-cells to which I have alluded above.

I believe that the direct cause which determines why the apparently identical cells of the young testis and ovary in the Daphnidae  develope in such different directions, is to be found in the fact, that their nuclei possess different histogenetic nucleoplasms, while, if we neglect individual differences, the germ-plasm remains precisely the same. In the sperm-cells the histogenetic nucleoplasm is spermogenetic, in the egg-cells it is ovogenetic. This must be conceded if our fundamental view is correct, that the specific nature of the cell-body is determined by the nature of its nucleus.

Similarly, the germ-cells of female Daphnidae, which at first do not exhibit the smallest differences, must really differ in that their nuclei must contain different kinds of nucleoplasm, which are present in different proportions. Germ-cells which are to produce a finely granular, brick-red, winter yolk (Moina rectirostris ) must possess an ovogenetic nucleoplasm of a somewhat different molecular structure from those germ-cells which have only to form a few large blue fat-globules, as in the summer-eggs of the same species. It is further probable that different proportions obtain between germ-plasm and ovogenetic nucleoplasm, in these two kinds of germ-cells; and it would be a very simple explanation of the otherwise obscure part played by the food-cells, if we were to suppose that they do not contain any germ-plasm at all, and on this account do not enter upon embryonic development, but are arrested after growing to a certain size. Such an explanation, however, would not by itself show why they subsequently undergo gradual solution in the surrounding fluids. But since we know that egg-cells also begin to undergo solution as soon as the parent Daphnid is poorly nourished, we can hardly help also referring the solution of the food-cells to insufficient nourishment, occurring as soon as the egg-cell, after the attainment of a certain size, exercises a superior power of assimilation. But hitherto we could not in any way understand why the third out of a group of germ-cells should always gain this superior power and become an egg-cell. If it could be shown that its position is more highly favoured in respect of nutrition, we could understand why it outstrips the other three in development, and thus prevents them from further growth. But nothing of the kind can be shown to occur with any degree of probability, as I have previously mentioned in my works on the subject. At that time, having no better explanation, I adopted the view in question, although only as a provisional interpretation. It was not possible for me to seek in the substance of those four apparently identical cells for the cause of their different development; but now I am justified in offering the supposition that during the division of a primitive germ-cell into two, and afterwards into four germ-cells, an unequal division of the nucleoplasms takes place, in that one of the four cells receives germ-plasm as well as ovogenetic nucleoplasm, while the other three receive the latter alone. Similarly, the fact that the second cell of the group may occasionally become an egg is also intelligible, although this fact remained quite inexplicable by my former interpretation. The fact that true egg-cells, or even the whole ovary with all its germ-cells, may break up and become absorbed when the animal has been starved for a certain period of time, seems to me to be no objectionto our present view, any more than the fact that an Infusorian may die from starvation would be an objection to the supposition of the immortality of unicellular organisms. The growth of an organism is not only arrested by its constitution, but also by absolute want of food; but it would be very foolish to explain the differences in size of the various species of animals as results of the different conditions of nutrition to which they were subject. Just as a sparrow, however highly nourished, could never attain the size or form of an eagle, so a germ-cell destined to become a summer-egg could never attain the size, form, or colour of a winter-egg. It is by internal constitutional causes that the course of development is determined in both these cases; and in the latter, the cause can hardly be anything more than the different constitution of the nucleoplasms.

All these considerations depend upon the supposition that the egg-nucleus contains two kinds of idioplasm, viz. germ-plasm and ovogenetic nucleoplasm. I have not hitherto brought forward any direct evidence in favour of this assumption, but I believe that such proofs can be obtained.

It is well known that there are certain eggs in which the polar bodies are not expelled until after the entrance of spermatozoa. Brooks [172] has already made use of this fact as evidence against Minot's and Balfour's theory; for he quite rightly concludes that if the polar bodies really possess the significance of male cells, we cannot understand why such eggs are unable to develope without fertilization, when they still possess the male half of the nucleus necessary for development. But such eggs (e.g. that of the oyster) do not develope, but always die if they remain unfertilized.

This argument can only be met by a new hypothesis, the construction of which I must leave to the defenders of the above-mentioned theory. But the observation in question seems to me to furnish at the same time a proof of the co-existence of two different nucleoplasms in the egg-nucleus. If the nucleoplasm of the polar bodies was also germ-plasm, we could not understand why such eggs are unable to develope parthenogenetically, for at least as much germ-plasm is contained in the unfertilized egg as would have been present after fertilization.

The only objection which can be raised against this conclusion depends upon the supposition that the nucleoplasm of the sperm-cell is qualitatively different from that of the egg-cell. I have already dealt with this view, but I should wish to refer to it again rather more in detail. Some years ago I expressed the opinion [173] that the physiological values of the sperm-cell and of the egg-cell must be identical; that they stand in the ratio of 1 : 1. But Valaoritis [174] has brought forward the objection that if we consider the function of a cell as the measure of its physiological value, it is only necessary to point to the respective functions of ovum and spermatozoon in order to show that their physiological values must be different. ‘The egg-cell alone, by passing more or less completely through the phyletic stages of the female parent, developes into a similar organism; and although the presence of the spermatozoon is in most cases required in order to render possible such a result, the cases of parthenogenesis prove nevertheless that the egg can do without this stimulus.' This objection appeared to be fully justified as long as fertilization was looked upon as the ‘vitalization of the germ,' and so long as the sperm-cell was considered as merely ‘the spark that kindles the gunpowder,' and further so long as the germ-substance was believed to be contained in the cell-body. But now we can hardly give to the body of the egg-cell a higher significance than that of the common nutritive soil of the two nuclei which conjugate in fertilization. But these two nuclei ‘are not different in nature,' as Strasburger says, and as I fully believe. They cannot differ in kind, for they both consist of germ-plasm belonging to the same species of animal or plant; and there cannot be any deeper contrast between them such as would correspond to the differences between mature individuals. They cannot, from their essential nature, exercise any special attraction upon each other, and when we see that sperm-cell and egg-cell do nevertheless attract each other, as has been shown in both plants and animals, such a property must have been secondarily acquired, and has no other significance than to favour the union of sexual cells—an arrangement which may be compared to the vibrating flagellum of the spermatozoon or the micropyle of the egg, but which is not fundamental, and is not based upon the molecular structure of the germ-plasm. In lower plants, Pfeffer has proved that certain chemical stimuli emanate from the egg and attract the spermatozoid; and according to Strasburger, the synergidae in the upper part of the embryo-sac of Phanerogams secrete a substance which is capable of directing the growth of the pollen-tube towards the egg-cell. In animals it is only known as yet that spermatozoa and ova do attract each other, so that the former find the latter and bore their way through its membranes. It has also been shown that the substance of the egg-body moves towards the penetrating spermatozoon (‘cones d'exsudation ' in Asteridae : Fol); and that it sometimes enters upon convulsive movements (Petromyzon ). Here therefore a mutual stimulation and attraction must exist; and perhaps we must also assume that there is an attraction between the two conjugating nuclei, for we cannot readily understand how the cytoplasm alone could direct the one to the other, as Strasburger supposes. According to Strasburger's hypothesis, we must suppose that part of the specific cytoplasm of the sperm-cell continues to surround the nucleus after it has penetrated into the body of the egg. But however this may be, the assumed attraction between the conjugating nuclei certainly cannot depend upon the molecular structure of their germ-plasm, which is the same in both, but it must be due to some accessory circumstance. If it were possible to introduce the female pronucleus of an egg into another egg of the same species, immediately after the transformation of the nucleus of the latter into the female pronucleus, it is very probable that the two nuclei would conjugate just as if a fertilizing sperm-nucleus had penetrated. If this were so, the direct proof that egg-nucleus and sperm-nucleus are identical would be furnished. Unfortunately the practical difficulties are so great that it is hardly possible that the experiment can ever be made; but such want of experimental proof is partially compensated for by the fact, ascertained by Berthold, that in certain Algae (Ectocarpus  and Scytosiphon ) there is not only a female, but also a male parthenogenesis; for he shows that in these species the male germ-cells may sometimes develope into plants, which however are very weakly [175]. Furthermore the process of conjugation may be considered as a proof that this view as to the secondary importance of sexual differentiation is the true one. At the present time there can hardly be any hesitation in accepting the view that conjugation is the sexual reproduction of unicellular organisms. In these the two conjugating cells are almost always identical in appearance, and there is no evidence in favour of the assumption that they are not also identical in molecular structure, at least so far as one individual of the same species may be identical with another. But there are also forms in which the conjugating cells are distinctly differentiated into male and female, and these are connected with the former by a gradual transition: thus in Pandorina, a genus of Volvocineae, we are unable to make out any differences between the conjugating cells, while large egg-cells and minute sperm-cells exist in the closely allied Volvox. If we must suppose that the conjugation of two entirely identical Infusoria has the same physiological effect as the union of two sexual cells in higher animals and plants, we cannot escape the conclusion that the process is essentially the same throughout: and that therefore the differences, which are perhaps already indicated in Pandorina  and are very distinct in Volvox  and in all higher organisms, have nothing to do with the nature of the process, but are of quite secondary importance. If we further take into account the extremely different constitution of the two kinds of sexual cells in size, appearance, membranes, motile power, and finally in number, no doubt remains that these differences are only adaptations which secure the meeting of the two kinds of conjugating cells: that in each species they are adaptations to the peculiar conditions under which fertilization takes place.


It is of considerable importance for the proper appreciation of the views advanced in the present essay, to ascertain whether a polar body is or is not expelled from eggs which develope parthenogenetically. I wish therefore to briefly state that I have recently succeeded in proving the formation of a polar body of distinctly cellular structure in the summer-eggs of Daphnidae. I propose to publish a more detailed account in a future paper.

A. W.

June 22, 1885.

Footnotes for Essay IV

94.  Häckel, ‘Ueber die Wellenzeugung der Lebenstheilchen etc.,' Berlin, 1876.

95.  Darwin, ‘The Variation of Animals and Plants under Domestication,' vol. ii. 1875, chap. xxvii. pp. 344-399.

96.  His, ‘Unsre Körperform etc.,' Leipzig, 1875.

97.  Brooks, ‘The Law of Heredity,' Baltimore, 1883.

98.  Galton's experiments on transfusion in Rabbits have in the mean time really proved that Darwin's gemmules do not exist. Roth indeed states that Darwin has never maintained that his gemmules make use of the circulation as a medium, but while on the one hand it cannot be shown why they should fail to take the favourable opportunities afforded by such a medium, inasmuch as they are said to be constantly circulating through the body; so on the other hand we cannot understand how the gemmules could contrive to avoid the circulation. Darwin has acted very wisely in avoiding any explanation of the exact course in which his gemmules circulate. He offered his hypothesis as a formal and not as a real explanation.

Professor Meldola points out to me that Darwin did not admit that Galton's experiments disproved pangenesis (‘Nature,' April 27, 1871, p. 502), and Galton also admitted this in the next number of ‘Nature' (May 4, 1871, p. 5).—A. W. 1889.

99.  Weismann, ‘Ueber die Vererbung.' Jena, 1883; translated in the present volume as the second essay ‘On Heredity.'

100.  E. Roth, ‘Die Thatsachen der Vererbung.' 2. Aufl., Berlin, 1885, p. 14.

101.  Jäger, ‘Lehrbuch der allgemeinen Zoologie,' Bd. II. Leipzig, 1878.

102.  M. Nussbaum, ‘Die Differenzirung des Geschlechts im Thierreich,' Arch. f. Mikrosk. Anat., Bd. XVIII. 1880.

103.  I have since learnt that Professor Rauber of Dorpat also expressed similar views in 1880; and Professor Herdman of Liverpool informs me that Mr. Francis Galton had brought forward in 1876 a theory of heredity of which the fundamental idea in some ways approached that of the continuity of the germ-plasm (‘Journal of the Anthropological Institute,' vol. v; London, 1876).—A. W., 1888.

[A less complete theory was brought forward by Galton at an earlier date, in 1872 (see Proc. Roy. Soc. No. 136, p. 394). In this paper he proposed the idea that heredity chiefly depends upon the development of the offspring from elements directly derived from the fertilized ovum which had produced the parent. Galton speaks of the fact that ‘each individual may properly be conceived as consisting of two parts, one of which is latent and only known to us by its effects on his posterity, while the other is patent, and constitutes the person manifest to our senses. The adjacent and, in a broad sense, separate lines of growth in which the patent and latent elements are situated, diverge from a common group and converge to a common contribution, because they were both evolved out of elements contained in a structureless ovum, and they, jointly, contribute the elements which form the structureless ova of their offspring.' The following diagram shows clearly ‘that the span of each of the links in the general chain of heredity extends from one structureless stage to another, and not from person to person:—

Structureless elements {...Adult Father... } structureless elements
in Father         {...Latent in Father...} in Offspring.'

Again Galton states—‘Out of the structureless ovum the embryonic elements are taken ... and these are developed (a ) into the visible adult individual; on the other hand ..., after the embryonic elements have been segregated, the large residue is developed (b ) into the latent elements contained in the adult individual.' The above quoted sentences and diagram indicate that Galton does not derive the whole of the hereditary tendencies from the latent elements, but that he believes some effect is also produced by the patent elements. When however he contrasts the relative power of these two influences, he attaches comparatively little importance to the patent elements. Thus if any character be fixed upon, Galton states that it ‘may be conceived (1) as purely personal, without the concurrence of any latent equivalents, (2) as personal but conjoined with latent equivalents, and (3) as existent wholly in a latent form.' He argues that the hereditary power in the first case is exceedingly feeble, because ‘the effects of the use and disuse of limbs, and those of habit, are transmitted to posterity in only a very slight degree.' He also argues that many instances of the supposed transmission of personal characters are really due to latent equivalents. ‘The personal manifestation is, on the average, though it need not be so in every case, a certain proof of the existence of latent elements.' Having argued that the strength of the latter in heredity is further supported by the facts of reversion, Galton considers it is safe to conclude ‘that the contribution from the patent elements is very much less than from the latent ones.' In the later development of his theory, Galton adheres to the conception of ‘gemmules' and accepts Darwin's views, although ‘with considerable modification.' Together with pangenesis itself, Galton's theory must be looked upon as preformational, and so far it is in opposition to Weismann's theory which is epigenetic. See Appendix IV. to the next Essay (V.), pp. 316-319.—E. B. P.]

104.  Nägeli, ‘Mechanisch-physiologische Theorie der Abstammungslehre.' München u. Leipzig, 1884.

105.  O. Hertwig, ‘Beiträge zur Kenntniss der Bildung, Befruchtung und Theilung des thierischen Eies.' Leipzig, 1876.

106.  Fol, ‘Recherches sur la fécondation, etc.' Genève, 1879.

107.  Kölliker formerly stated, and has again repeated in his most recent publication, that the spermatozoa (‘Samenfäden') are mere nuclei. At the same time he recognizes the existence of sperm-cells in certain species. But proofs of the former assertion ought to be much stronger in order to be sufficient to support so improbable a hypothesis as that the elements of fertilization may possess a varying morphological value. Compare Zeitschr. f. wiss. Zool., Bd. XLII.

108.  F. M. Balfour, ‘Comparative Embryology,' vol. i. p. 69.

109.  Arch. f. mikr. Anat., Bd. 23. p. 182, 1884.

110.  Born, ‘Biologische Untersuchungen,' I, Arch. Mikr. Anat., Bd. XXIV.

111.  Roux, ‘Beiträge zum Entwicklungsmechanismus des Embryo,' 1884.

112.  O. Hertwig, ‘Welchen Einfluss übt die Schwerkraft,' etc. Jena, 1884.

113.  [Our present knowledge of the development of vegetable ova (including the position of the parts of the embryo) is also in favour of the view that it is not influenced by external causes, such as gravitation and light. It takes place in a manner characteristic of the genus or species, and essentially depends on other causes which are fixed by heredity, see Heinricher ‘Beeinflusst das Licht die Organanlage am Farnembryo?' in Mittheilungen aus dem Botanischen Institute zu Graz, II. Jena, 1888.—S. S.]

114.  E. van Beneden, ‘Recherches sur la maturation de l'œuf,' etc., 1883.

115.  M. Nussbaum, ‘Ueber die Veränderung der Geschlechtsprodukte bis zur Eifurchung,' Arch. Mikr. Anat., 1884.

116.  Eduard Strasburger, ‘Neue Untersuchungen über den Befruchtungsvorgang bei den Phanerogamen als Grundlage für eine Theorie der Zeugung.' Jena, 1884.

[It is now generally admitted that, in the Vascular Cryptogams, as also in Mosses and Liverworts, the bodies of the spermatozoids are formed by the nuclei of the cells from which they arise. Only the cilia which they possess, and which obviously merely serve as locomotive organs, are said to arise from the surrounding cytoplasm. It is therefore in these plants also the nucleus of the male cell which effects the fertilization of the ovum. See Göbel, ‘Outlines of Classification and Special Morphology,' translated by H. E. F. Garnsey, edited by I. B. Balfour, Oxford, 1887, p. 203, and Douglas H. Campbell, ‘Zur Entwicklungsgeschichte der Spermatozoiden,' in Berichte d. deutschen bot. Gesellschaft, vol. v (1887), p. 120.—S. S.]

117.   O. Hertwig, ‘Das Problem der Befruchtung und der Isotropie des Eies.' Jena, 1885.

118.  This opinion was first expressed in my lecture, ‘Ueber die Dauer des Lebens,' Jena, 1882, translated as the first essay in the present volume.

119.  M. Nussbaum, ‘Sitzungber. der Niederrheinischen Gesellschaft fur Natur- und Heilkunde.' Dec. 15, 1884.

120.  A. Gruber, ‘Biologisches Centralblatt,' Bd. IV. No. 23, and V. No. 5.

121.  According to the observations of Nussbaum and van Beneden, the egg of Ascaris  departs from the ordinary type, but I think that the latter observer goes too far when he concludes from the form of the nuclear spindle (of which the two halves are inclined to each other at an angle) that we have before us a process entirely different from that of ordinary nuclear division.

122.  Trinchese, ‘I primi momenti dell' evoluzione nei molluschi,' Atti Acad. Lyncei (3) vii. 1879, Roma.

123.  M. Nussbaum, ‘Archiv für Mikroskopische Anatomie,' Bd. XVIII und XXIII.

124.  Valaoritis, ‘Die Genesis des Thier-Eies.' Leipzig, 1882.

125.  Kölliker, ‘Die Bedeutung der Zellkerne,' etc.; Zeitschr. f. wiss. Zool. Bd. XLII.

126.  ‘Compt. rend.' Tom. LIV. p. 150.

127.  ‘Entwicklung der Dipteren.' Leipzig, 1864.

128.  ‘Zeitschr. f. wiss. Zool.' Bd. XVI. p. 389 (1866).

129.  ‘Compt. rend.' Nov. 13, 1882.

130.  Grobben, ‘Arbeiten d. Wien. Zool. Instituts,' Bd. II. p. 203.

131.  Bütschli, ‘Zeitschrift f. wiss. Zool.' Bd. XXIII. p. 409.

132.  ‘Science,' vol. iv. No. 90, 1884.

133.  Among unicellular organisms, encysted individuals are often called germs. They sometimes differ from the adult organism in their smaller size and simpler structure (Gregarinidae ), but they represent the same morphological stage of individuality.

134.  Compare Bütschli in Bronn's ‘Klassen und Ordnungen des Thierreichs,' Bd. I. p. 777.

135.  Gustav Jäger, ‘Lehrbuch der Allgemeinen Zoologie,' Leipzig, 1878; II. Abtheilung. Probably on account of the extravagant and superficial speculations of the author, the valuable ideas contained in his book have been generally overlooked. It is only lately that I have become aware of Jäger's above-mentioned hypothesis. M. Nussbaum seems to have also arrived at the same conclusion quite independently of Jäger. The latter has not attempted to work out his hypothesis with any degree of completeness. The above-mentioned observations are followed immediately by quite valueless considerations, as, for instance, that the ontogenetic and phyletic groups are in concentric ratio! The author might as well speak of a quadrangular or triangular ratio!

136.  [Facts of the same kind are also known in the Vascular Cryptogams, Muscineae, Characeae, Florideae, etc.—S. S.]

137.  Weismann, ‘Die Entstehung der Sexualzellen bei den Hydromedusen.' Jena, 1883.

138.  [I adopt this term, suggested by E. Ray Lankester and G. C. Bourne, as the name of the supporting lamina of Coelenterata. See ‘Quart. Journ. Microsc. Sci.' Jan. 1887, p. 28.—E. B. P.]

139.  Dr. Clemens Hartlaub, ‘Ueber die Entstehung der Sexualzellen bei Obelia.' Freiburg, Inaugural Dissertation: see also ‘Zeitschrift für wissenschaftliche Zoologie.' Bd. XLI. 1884.

140.   English translation, by H. Marshall Ward. Oxford, 1887, Clarendon Press.

141.  [Such gland-cells are known in both animals and plants. See W. Gardiner and Tokutaro Ito, On the structure of the mucilage-secreting cells of Blechnum occidentale  L., and Osmunda regalis  L., ‘Annals of Botany,' vol. i. p. 49.—S. S.]

142.  Thus in 1877 Bütschli thought that ‘the chief significance of the formation of polar bodies lies in the removal of part of the nucleus of the egg, whether this removal is effected by simple expulsion or by the budding of the egg-cell.' ‘Entwicklungsgeschichtliche Beiträge;' Zeitschrift für wissenschaftliche Zoologie, Bd. XXIX. p. 237, footnote.

143.  C. S. Minot, ‘Account, etc.;' Proc. Boston Soc. Nat. Hist. vol. xix. p. 165, 1877.

144.  E. van Beneden and Boveri have recently, quite independently of each other, made a more exact study of these ‘Polkörperchen' (‘Centrosoma,' Boveri). They show that nuclear division starts from these bodies, although the mode of origin of the latter is not yet quite clear.—A. W., 1888.

145.  The existence of polar bodies in sponges has been recently proved by Fiedler: Zool., Anzeiger., Nov. 28, 1887.—A. W., 1888.

146.  They have now been observed in many species, so that their general occurrence in insects is tolerably certain. Compare bibliography given in Weismann and Ischikawa, ‘Weitere Untersuchungen zum Zahlengesetz der Richtungskörper,' ‘Zoolog. Jahrbücher,' vol. iii. 1888, p. 593.—A. W., 1888.

147.  Van Beneden, even in his last work, considers these bodies to have only the value of nuclei; l. c., p. 394.

148.  I purposely abstain from using a more precise term, for the complicated terminology employed in spermatogenesis hardly contributes anything to the elucidation of the phenomena themselves. Why do we not simply speak of sperm-cells and spermatoblasts, and distinguish the latter by numbers when they occur in successive generations of different form? Moreover, all the names which have been suggested for successive stages of development, can only be applied to the special group of animals upon which the observations have been made. Hence great confusion results from the use of such terms as spermatoblasts, spermatogonia, spermatomeres, spermatocysts, spermatocytes, spermatogemmae, etc.

149.  Fol, ‘Sur l'origine des cellules du follicule et de l'ovule chez les Ascidies.' Compt. rend., 28 mai, 1883.

150.  Roule, ‘La structure de l'ovaire et la formation des œufs chez les Phallusiadées.' Ibid., 9 avril, 1883.

151.  Balbiani, ‘Sur l'origine des cellules du follicule et du noyau vitellin de l'œuf chez les Géophiles.' Zool. Anzeiger, 1883, Nos. 155, 156.

152.  Will, ‘Ueber die Entstehung des Dotters und der Epithelzellen bei den Amphibien und Insecten.' Ibid., 1884, Nos. 167, 168.

153.  [It is almost certain that this vesicle is not derived from the nucleus, but from the cytoplasm of the sperm-mother-cell. See Douglas H. Campbell, ‘Zur Entwicklungsgeschichte der Spermatozoiden' in Berichte der deutschen botanischen Gesellschaft, vol. v, 1887, p. 122.—S. S.]

154.  Bütschli, ‘Gedanken über die morphologische Bedeutung der sogenannten Richtungskörperchen,' Biolog. Centralblatt, Bd. VI. p. 5, 1884.

155.  F. M. Balfour, ‘Comparative Embryology,' vol. i. p. 63.

156.  The formation of a polar body in parthenogenetic eggs has now been proved: see note at the end of this Essay; see also Essay VI.—A. W., 1888.

157.   R. Leuckart,—article ‘Zeugung,' in R. Wagner's ‘Handwörterbuch der Physiologie,' 1853, Bd. IV. p. 958. Similar observations were made by Max Schultze. These observations appear however to be erroneous, for Pflüger has since shown that the eggs of frogs never develope if the necessary precautions are taken to prevent the access of any spermatozoa to the water.—A. W., 1888.

158.  Oellacher, ‘Die Veränderungen des unbefruchteten Keims des Hühncheneies. ‘Zeitschrift für wissenschaftliche Zoologie,' Bd. XXII. p. 181. 1872.

159.  Hensen, ‘Centralblatt,' 1869, No. 26.

160.  Weismann, ‘Beiträge zur Naturgeschichte der Daphnoiden,' Leipzig, 1876-79, Abhandlung VII, and ‘Zeitschrift für wissenschaftliche Zoologie,' Bd. XXXIII.

161.  Weismann, ‘Beiträge zur Kenntniss der ersten Entwicklungsvorgänge im Insectenei,' Bonn, 1882, p. 106.

162.   W. Roux, ‘Ueber die Bedeutung der Kerntheilungsfiguren.' Leipzig, 1883.

163.  We now know that the number of loops varies considerably in different species, even when they belong to the same group of animals (e.g. Nematodes).—A.W., 1888.

164.  This expression is used by bee-keepers, for instance by the well-known Baron Berlepsch. Of course, it would be more accurate to say that the queen, seeing the cell of a drone, is stimulated to lay an unfertilized egg, and that, on the other hand, she is stimulated to lay a fertilized egg when she sees the cell of a worker, or that of a queen.

165.  E. Bessels, ‘Die Landois'sche Theorie widerlegt durch das Experiment.' Zeitschrift für wissenschaftliche Zoologie, Bd. XVIII. p. 124. 1868.

166.  ‘Daphniden,' Abhandlung, vi. p. 324.

167.  l. c., p. 150.

168.  Carl Düsing, ‘Die Regulirung des Geschlechtsverhältnisses.' Jena. 1884.

169.  I intend to publish these experiments elsewhere in connexion with other observations.

170.  Weismann, ‘Daphniden,' Abhandlung, VII. p. 329; Herbert Spencer, ‘The Principles of Biology,' 1864, vol. i. pp. 229, 230.

171.  The same fact has since been ascertained in species belonging to several groups of animal.

172.  Brooks, ‘The Law of Heredity.' Baltimore, 1883, p. 73.

173.  ‘Zeitschrift für wissenschaftliche Zoologie,' Bd. XXXIII. p. 107. 1873.

174.  Valaoritis, l. c., p. 6.

175.  I quote from Falkenberg, in Schenk's ‘Handbuch der Botanik,' Bd. II. p. 219. He further states that these are the only instances hitherto known in which undoubted male cells have proved to be capable of further development when they have been unable to exercise their powers of fertilization. It must be added that the two kinds of germ-cells do not differ in appearance, but only in behaviour; the female germ-cells becoming fixed, and withdrawing one of their two flagella, while the male cells continue to swarm. But even this slight degree of differentiation requires the supposition of internal molecular differentiation.