Prev. 100Madame de Bourboulon1 Madame Delphine1 Madame Hommaire de Hell3 Madame Roland12 Madden1 Madder1Made1 mademoiselle3 madère1 Madge1 Madge Culls1 Madge Mumblecrust1 Madm.1 Madoc1 Madrid1 Maelstrom1 maestro di color che sanno1 Mag3 Mag.1 Magdalene1 Magg1 Maggot Boiler1 Maggotty1 Maggoty1 Magic2 Magic Circle1 Magic Gall Mirror1 Magna Carta2 Magna est veritas, et prævalebit1 Magnesia1 Magnesium1 Magnesium sulphate1 Magnet6 Magnet Operation1 Magnet Pole1 Magnet therapy1 Magnetic andElectro-magnetic Equipo...1 Magnetic Cut-out1 Magnetic Equator1 Magnetic Field of Force1 Magnetic Figures1 Magnetic Filament1 Magnetic Fluids1 Magnetic Flux1 Magnetic Force1 Magnetic Friction1 Magnetic Friction Gear1 Magnetic Gear1 Magnetic Hysteresis1 Magnetic Inclination1 Magnetic Induction2 Magnetic Inertia1 Magnetic Insulation1 Magnetic Intensity1 Magnetic Lag1 Magnetic Latitude1 Magnetic Leakage1 Magnetic Limit1 Magnetic Lines of Force1 Magnetic Mass1 Magnetic Matter1 Magnetic Memory1 Magnetic Meridian1 Magnetic Moment1 Magnetic Needle1 Magnetic Output1 Magnetic Parallels1 Magnetic Permeability1 Magnetic Perturbations1 Magnetic Pole1 Magnetic Poles1 Magnetic Potential2 Magnetic Proof Piece1 Magnetic Proof Plane1 Magnetic Quantity1 Magnetic Reluctance1 Magnetic Reluctivity1 Magnetic Remanence1 Magnetic Retentivity1 Magnetic Rotary Polarization1 Magnetic Saturation1 Magnetic Screen1 Magnetic Self-induction1 Magnetic Separator1 Magnetic Shell1 Magnetic Shield1 Magnetic Shunt1 Magnetic Storm1 Magnetic Storms1 Magnetic Strain1 Magnetic Stress1 Magnetic Susceptibility1 Magnetic Tick1 Magnetic Top1 Magnetic Twist1 Magnetic Vane Ammeter1 Magnetic Variations1 Magnetism12 Magnetism of Gases1 Magnetism Sub-permanent1 Prev. 100


This plant, the root of which is either dried and bruised, or used fresh, for dyeing red, has a weak, square, jointed stem; and rises to the height of eight feet when supported, otherwise it creeps along the ground. At each joint there are from four to six leaves, about three inches in length, almost an inch broad in the middle, and pointed at both ends. The upper side of the leaves is smooth; but the middle nerve of the under side is armed with small rough prickles; and others of the same kind may be found on the stem. On this account, the leaves, which drop annually, adhere readily to other bodies, like those of the asperugo. The branches, which in June bear flowers divided into four yellow leaves, proceed from the joints. The fruit, a kind of berry, which, towards the time of its ripening, though that seldom happens among us, is first of a brownish colour, and then black, contains a round seed. The roots grow sometimes to the thickness of one's finger, push themselves deep into the earth, are surrounded by many small fibres, have a yellowish-red pith, and are covered with a black bark or rind. This plant grows wild in the Levant, as well as in Italy, the southern parts of France, and in Switzerland. The cultivated kind is well known, and is propagated with much advantage in various countries of Europe.

When one compares this short description with what Dioscorides says of a plant which he calls ereuthodanon, it will be readily seen that he meant our madder. He even compares its long square stem, armed with a great many hooks, to that of the asperugo ; and he tells us that the leaves stand in the form of a star around the joints. The fruit was at first green, then red, and lastly black. The thin long roots, adds he, which are red, serve for dyeing; and on that account the cultivated kind (he must therefore have been acquainted with the wild sort) is reared with much benefit in Galilee, around Ravenna in Italy and in Caria, where it is planted either among the olive-trees, or in fields destined for that purpose. It is remarked in some manuscripts, that this plant had a name given it by the Romans, which, as Marcellus Virgil observes, meant the same thing as Rubia sativa, and that it was called in Etruria Lappa minor, doubtless because, like the bur, it adhered to other bodies. On account of the colour which it communicated, it was called also sometimes cinnabaris 274 .

In opposition to this asserted identity I find only one doubt; namely, that among those plants which, on account of the position of their leaves, were called stellatæ, and which were all so like that we must reduce them to one natural order, there are more sorts, the roots of which dye red, and which on that account are very improperly called wild madder. Why, therefore, should the plant of Dioscorides be our madder, and not some other plant of the like nature? For this reason, in my opinion: because the ancients, who were acquainted with all these plants, which grew wild in their lands, were equally prudent as the moderns, and cultivated that kind only which was the most productive or beneficial, viz. our Rubia tinctorum.

This opinion will be strengthened by comparing the accounts given of that plant by other ancient writers. Theophrastus agrees almost perfectly with Dioscorides; and adds, that it did not grow upright, but was fond of reclining. The comparison, therefore, with the leaves of ivy cannot be just; but that I shall leave to the critics. Pliny says expressly, that the erythrodanum  or ereuthodanum  was in his mother-tongue called rubia ; and that its red roots were used to dye wool and leather red 275.

In the middle ages this plant was called varantia, a name which must have arisen from verantia. The latter means the real, genuine dye; as aurantia  signified a golden yellow. Till the year 1736, this plant was little regarded, except among dyers, farmers and merchants, who purchased it from the farmers, in order to sell it to the dyers with profit; and among a few herb-dealers and physicians, who, on the authority of the ancients, ascribed to it eminent virtues, which others doubted or altogether denied. In the above year, however, a property of it was discovered by accident, as usual, which rendered it an object of more attention. John Belchier, an English surgeon, having dined with a cotton-printer, observed that the bones of the pork which was brought to the table were red. As he seemed surprised at this circumstance, his host assured him that the redness was occasioned by the swine feeding on the water mixed with bran in which the cotton cloth was boiled, and which was coloured by the madder used in printing it. Belchier 276 , to whom this effect was new, convinced himself by experiments that the red colour of the bones had arisen from the madder employed in printing the cotton, and from no other cause; and he communicated his discovery to the Royal Society, in a paper which was printed in their Transactions.

This singularity was now soon known to all the naturalists, several of whom made new experiments, the result of which brought to light many truths useful to physiology. Besides the roots of madder, those of the Galium (yellow ladies-bed-straw) and other plants which have an affinity to madder, produce the like effects; but this is the case neither with saffron nor woad, nor with many others much used in dyeing. The colouring takes place soonest in young animals; and is strongest where the bones are hardest and thickest. On the other hand, it does not reach the soft parts; appears only a little in the milk; and in general is not perceptible in the animal juices 277.

As the English calico-printers were acquainted with this effect of madder before it was known to naturalists, it is not improbable that it was known much sooner in other places, where the plant has been much cultivated and used since the earliest periods. From what J. E. Stief says, we have reason to believe that the people in the neighbourhood of Breslau, his native city, who gave the stalks of the madder plant to their cows instead of straw, must have first discovered that it possessed the property of communicating a red colour to the bones 278.

As many truths not yet investigated by means of new experiments, and which on that account have not yet been acknowledged, are concealed among the evidently false assertions to be found in the works of the ancients, and as these works were thrown aside too early, before their contents were properly examined, I was induced to suspect that some hints of this colouring property might also be mentioned in them, which indeed is the case.

We learn from the works of Galen and Dioscorides, that the ancient physicians remarked that the use of certain roots, which they administered to their patients, communicated a colour to their urine and excrements; and this observation has been repeated by Cardan, Thurneisser, Porta, Castor, Durantes, and others. Had those ancient physicians, who often prescribed these roots, and paid attention to the colour of the excrements of their patients, been accustomed to open their bodies when they died under their hands, they would have perhaps remarked, in human bones, what was observed long after in the bones of animals, when the roots were no longer used in medicine; and what, if I am not mistaken, was never yet observed in the bones of the human species 279.

Böhmer, who made researches respecting the antiquity of this observation, found it neither in Rombert. Dodonæus, Mich. Ettmuller, Morin, Will. Salmon, nor others, who, however, speak of coloured urine. In his opinion the oldest writer who speaks of coloured bones is Mizaldus; but what he relates is all taken from the treatise of Lemnius De Miraculis Occultis Naturæ; and the latter therefore is the oldest writer that I at present can mention as acquainted with this property. He was a physician in Zealand, where madder has been cultivated since the earliest ages, and where he had an opportunity of remarking it. He says that the bones of animals became red, as had been observed when the flesh was dressed, by their eating only the leaves, and not the roots. In the first edition of the above work, printed in octavo, in the year 1559, which consists of two books, this information will not be found; but it may be contained in the second of 1564, which comprehends four books.

[The madder plant is much cultivated in Holland, but Macquei observes that the Dutch were first indebted to the Flemish refugees for their knowledge of the method of preparing this plant. Its culture has often been attempted in England, but always without success 280. It is also largely cultivated in Alsace and Provence in France, especially near Avignon, in Asiatic Turkey, and in Italy; from which places it is largely exported. The Turkey and Provence madder is procured from Rubia peregrina ; the remainder from R. tinctorum. To prepare the root, which is the part used in dyeing, it is removed from the ground, picked, dried and ground.

Madder contains three distinct colouring principles; two of these are red, viz. alizarine and purpurine, and one, xanthine, is yellow.

Since 1836, two new products have been introduced into commerce, which are destined to replace madder in the operations of dyeing and calico-printing; one is called garancine, the other colorine. Garancine is prepared by washing and macerating madder, and filtering through linen. The grounds are then crushed and mixed with sulphuric acid, equal to half the amount of madder first employed; the acid should be somewhat dilute. It is then poured hot upon the madder, agitated, and when the mixture appears intimate, the temperature is raised to 212°, and maintained for about an hour. It is then again mixed with water, filtered, and thoroughly washed. It is finally pressed, dried and passed through the sieve. This is the process patented by MM. Lagier, Robiquet and Colin, in 1828.

It was first introduced into commerce by the house of Lagier and Thomas, at Avignon, in 1829.

The great advantage of garancine over madder is that it does not change the white, and that the bleaching of the stuffs dyed with it is reduced to a mere nothing. Hot water or bran are the only means used for clearing them. Madder is an adjective colour, that is to say, one which requires to be combined with some basic substance or mordant to render its fixture upon the dye-stuff permanent.]


274  Some also may with equal propriety have called it sandyx ; and I am of opinion that under this name we are to understand our madder, at least in a passage of Virgil, Eclogue iv. 45, where he says, “Sponte sua sandyx pascentes vestiet agnos.” As the wool of the sheep became red by eating the madder which grew in the fields, it could be immediately manufactured, without dyeing it artificially. We manufacture the wool of our brown sheep in its natural colour, and this was done also by the ancients. Cloths of this kind were the panni nativi coloris, as they are called by Pliny, xxxvi. 7; and the words of Martial, xiv. 133, allude to a dress made of such cloth:

Non est lana mihi mendax, nec mutor aëno,
... me mea tinxit ovis.

I shall here take occasion to remark, that the word lutum, in the line preceding the above passage of Virgil, must be translated yellow-weed, and not woad. The former, Reseda luteola, dyes yellow; but the latter, Isatis, dyes blue. Lutum, however, in Cæsar De bello Gallico, v. 14, seems to have been woad : “Omnes se Britanni luteo inficiunt, quod et cæruleum efficit colorem.” It appears, therefore, that both names were liable to be confounded in the Latin, as they are in the German; unless Davis be right, who, instead of luteo, reads vitro. That sandyx, in Virgil, signifies a plant rather than a mineral, is to me far more probable. The author speaks of plants which the sheep ate while feeding (pascentes ); and both the above-mentioned dye-plants, yellow-weed and woad, grow wild in Italy. The opinion of Pliny, who understood the passage so, is not to be despised; and therefore the poetical account, that the pasture dyed the wool, is not altogether without foundation; especially as not only the roots, but also the leaves of madder, communicate a colour to the solid parts of animal bodies. I will however allow that most people readily fall into the error of being led away by imagination; and often suppose that they find in passages of ancient authors more than others can discover, or perhaps even than they contain.

275  Lib. xxiv. 9, p. 341.

276  The first account of this circumstance may be found in the Philosophical Transactions, vol. xxxix. n. 442, p. 287; n. 443, p. 299. Among the principal experiments made on this subject, are those of the Italian Matth. Bazanus, in Comment. Bononiens. and of J. H. Benj. Böhmer, in a dissertation entitled Radicis Rubiæ tinctorum effectus in Corpore Animali, Lips. 1751. Other works and observations relative to this singularity are mentioned in Haller's Elementa Physiologiæ, v. p. 327.

277  That the Rubia  colours the milk has been denied by many, who are mentioned in Haller's Physiol. viii. p. 328. Young, in his Treatise De Lacte, says only that it has no effect on carnivorous animals. Being once engaged in making experiments on the madder dye, I gave the plant to a cow for several days, and I found that the milk became reddish and streaked with veins which were of a darker colour than the other parts. That well-known farmer, Gugenmus, gave the madder-plant, formed into hay, to his cows, who ate it readily. Their milk was somewhat reddish, and the butter and cheese acquired by these means in winter an agreeable colour. Perhaps the effects do not take place when the animals get other food at the same time. Or may not the state of their health occasion some difference? This much is certain, that Chelidonium  (swallow-wort) makes the milk of cows that are weak appear bloody, while the same effect does not follow, or at least immediately, in those that are strong. Ruellius, De Natura Stirpium, Basiliæ, 1543, fol. p. 572, says of the Rubia, “Folia capillum tingunt.” If he meant that the hair became red by eating the leaves, he committed a mistake.

278  Dissertatio de Vita Nuptiisque Plantarum. Lipsiæ, 1741, p. 11.

279  I do not know that any one ever remarked human bones to have been dyed by madder, though the proposal for using the roots of it against the rachitis might have given occasion to make observations on that subject. See G. L. Hansen, Diss. de Rachitide. Gottingæ, 1762, p. 36. Professor Arnemann, who has a very numerous and valuable collection of skeletons, and who carefully examined many of the like kind during his travels, assured me that he never saw any bones that had been dyed by madder in the human body.

280  On Vegetable Substances, by the Society for the Diffusion of Useful Knowledge.