Sexual reproduction

Significance of Sexual Reproduction, etc


1.Can we dispense with the principle of natural selection?255
2.Nägeli's theory of transformation from internal causes 256
3.A definite course of development is possible without a self-changing idioplasm 258
4.Conclusive importance of ‘adaptations'260
5.The structure of whales as an example of adaptation 261
6.Transformation takes place by the smallest steps 264
7.The foundation of such minute changes depends upon individual variability 266
8.Difficulty in accounting for variability on the supposition of a continuity of the germ-plasm 266
9.Previous theories by which variability has been accounted for 267
10.Non-transmission of acquired characters 267
11.Nägeli's and Alexis Jordan's experiments 269
12.Germ-plasm is only altered with great difficulty 271
13.The source of individual variation lies in sexual reproduction 272
14.The process of natural selection does not operate when asexual reproduction takes place 274
15.Origin of variability in unicellular organisms 278
16.Sexual reproduction effects combination 279
17.E. van Beneden's and V. Hensen's theory of sexual reproduction as a process of rejuvenescence 282
18.Theoretical objections to such a view 283
19.Original significance of conjugation 286
20.Preservation of sexual reproduction by means of heredity 287
21.It is lost in parthenogenesis for reasons of utility 289
22.Parthenogenesis prevents further transformations 290
23.It excludes Panmixia and thus prevents disused organs from becoming rudimentary 291
24.Final considerations 294


I.Further considerations which oppose Nägeli's explanation of Transformation as due to internal causes 298
II.Nägeli's Explanation of Adaptation 300
III.Adaptations in Plants 308
IV.On the Supposed Transmission of Acquired Characters 310
1. Brown-Séquard's experiments on Guinea-pigs 310
2. A case which at first sight appears to prove the transmission of acquired characters 320
V.On the Origin of Parthenogenesis 323
VI.W. K. Brooks' Theory of Heredity 326

V. the Significance of Sexual Reproduction in the Theory of Natural Selection

During the quarter of a century which has elapsed since Biology began to occupy itself again with general problems, at least one main fact has been made clear by the united labours of numerous men of science, viz. the fact that the Theory of Descent, the idea of development in the organic world, is the only conception as to the origin of the latter, which is scientifically tenable. It is not only that, in the light of this theory, numerous facts receive for the first time a meaning and significance; it is not only that, under its influence, all the ascertained facts can be harmoniously grouped together; but in some departments it has already yielded the highest results which can be expected from any theory, it has rendered possible the prediction of facts, not indeed with the absolute certainty of calculation, but still with a high degree of probability. It has been predicted that man, who, in the adult state, only possesses twelve pairs of ribs, would be found to have thirteen or fourteen in the embryonic state: it has been predicted that, at this early period in his existence, he would possess the insignificant remnant of a very small bone in the wrist, the so-called os centrale, which must have existed in the adult condition of his extremely remote ancestors. Both predictions have been fulfilled, just as the planet Neptune was discovered after its existence had been predicted from the disturbances induced in the orbit of Uranus.

That existing species have not arisen independently, but have been derived from other and mostly extinct species, and that on the whole this development has taken place in the direction of greater complexity, may be maintained with the same degree of certainty as that with which astronomy asserts that the earth moves round the sun; for a conclusion may be arrived at as safely by other methods as by mathematical calculation.

If I make this assertion so unhesitatingly, I do not make it in the belief that I am bringing forward anything new nor because I think that any opposition will be encountered, but simply because I wish to begin by pointing out the firm ground on which we stand, before considering the numerous problems which still remain unsolved. Such problems appear as soon as we pass from the facts of the case to their explanation; as soon as we pass from the statement ‘The organic world has arisen by development,' to the question ‘But how has this been effected, by the action of what forces, by what means, and under what circumstances?'

In attempting to answer these questions we are very far from dealing with certainties; and opinions are still conflicting. But the answer lies in the domain of future investigation, that unknown country which we have to explore.

It is true that this country is not entirely unknown, and if I am not mistaken, Charles Darwin, who in our time has been the first to revive the long-dormant theory of descent, has already given a sketch, which may well serve as a basis for the complete map of the domain; although perhaps many details will be added, and many others taken away. In the principle of natural selection, Darwin has indicated the route by which we must enter this unknown land.

But this opinion is not universal, and only recently Carl Nägeli [176], the famous botanist, has expressed decided doubts as to the general applicability of the principle of natural selection. According to Nägeli, the co-operation of the external conditions of life with the known forces of the organism, viz. heredity and variability, are insufficient to explain the regular course of development pursued by the organic world. He considers that natural selection is at best an auxiliary principle, which accepts or rejects existing characters, but which is unable to create anything new: he believes that the causes of transformation reside within the organism alone. Nägeli further assumes that organisms contain forces which cause periodical transformation of the species, and he imagines that the organic world, as a whole, has arisen in a manner similar to that in which a single individual arises.

Just as a seed produces a certain plant because it possesses a certain constitution, and just as, in this process, certain conditions must be favourable (light, warmth, moisture, &c.) in order that development may take place, although they do not determine the kind or the manner of development; so, in precisely the same way, the tree of the whole organic world has grown up from the first and lowest forms of life on our planet, under a necessity arising from within, and on the whole independently of external influences. According to Nägeli, the cause which compels every form of living substance to change, from time to time, in the course of its secular growth, and which moulds it afresh into new species, must lie within the organic substance itself, and must depend upon its molecular structure.

It is with sincere admiration and real pleasure that we read the exposition in which Nägeli gives, as it were, the result of all his researches which bear upon the great question of the development of the organic world. But although we derive true enjoyment from the contemplation of the elaborate and ingeniously wrought-out theoretical conception,—which like a beautiful building or a work of art is complete in itself,—and although we must be convinced that its rise has depended upon the progress of knowledge, and that by its means we shall eventually reach a fuller knowledge; it is nevertheless true that we cannot accept the author's fundamental hypothesis. I at least believe that I am not alone in this respect, and that but few zoologists will be found who can adopt the hypothesis which forms the foundation of Nägeli's theory.

It is not my intention at present to justify my own widely different views, but the subject of this lecture compels me to briefly explain my position in relation to Nägeli, and to give some of the reasons why I cannot accept his theory of an active force of transformation arising and working within the organism; and I must also explain the reasons which induce me to adhere to the theory of natural selection.

The supposition of such a phyletic force of transformation (see Appendix I, p.298) possesses, in my opinion, the greatest defect that any theory can have,—it does not explain the phenomena. I do not mean to imply that it is incapable of rendering certain subordinate phenomena intelligible, but that it leaves a larger number of facts entirely unexplained. It does not afford any explanation of the purposefulness seen in organisms: and this is just the main problem which the organic world offers for our solution. That species are, from time to time, transformed into new ones might perhaps be understood by means of an internal transforming force, but that they are so changed as to become better adapted to the new conditions under which they have to live, is left entirely unintelligible by this theory. For we certainly cannot accept as an explanation Nägeli's statement that organisms possess the power of being transformed in an adaptive manner simply by the action of an external stimulus (see Appendix II, p.300).

In addition to this fundamental defect, we must also note that there are absolutely no proofs in support of the foundation of this theory, viz. of the existence of an internal transforming force.

Nägeli has very ingeniously worked out his conception of idioplasm, and this conception is certainly an important acquisition and one that will last, although without the special meaning given to it by its author. But is this special meaning anything more than pure hypothesis? Can we say more than this of the ingenious description of the minute molecular structure of the hypothetical basis of life? Could not idioplasm be built up in a manner entirely different from that which Nägeli supposes? And can conclusions drawn from its supposed structure be brought forward to prove anything? The only proof that idioplasm must necessarily change, in the course of time, as the result of its own structure, is to be found in the fact that Nägeli has so constructed it; and no one will doubt that the structure of idioplasm might have been so conceived as to render any transformation from within itself entirely impossible.

But even if it is theoretically possible to imagine that idioplasm possesses such a structure that it changes in a certain manner, as the result of mere growth, we should not be justified in thus assuming the existence of a new and totally unknown principle until it had been proved that known forces are insufficient for the explanation of the observed phenomena.

Can any one assert that this proof has been forthcoming? It has been again and again pointed out that the phyletic development of the vegetable kingdom proceeds with regularity and according to law, as we see in the preponderance and constancy of so-called purely ‘morphological' characters in plants. The formation of natural groups in the animal and vegetable kingdoms compels us to admit that organic evolution has frequently proceeded for longer or shorter periods along certain developmental lines. But we are not on this account compelled to adopt the supposition of unknown internal forces which have determined such lines of development.

Many years ago I attempted to prove [177] that the constitution or physical nature of an organism must exercise a restricting influence upon its capacity for variation. A given species cannot change into any other species, which may be thought of. A beetle could not be transformed into a vertebrate animal: it could not even become a grasshopper or a butterfly; but it could change into a new species of beetle, although only at first into a species of the same genus. Every new species must have been directly continuous with the old one from which it arose, and this fact alone implies that phyletic development must necessarily follow certain lines.

I can fully understand how it is that a botanist has more inclination than a zoologist to take refuge in internal developmental forces. The relation of form to function, the adaptation of the organism to the internal and external conditions of life, is less prominent in plants than in animals; and it is even true that a large amount of observation and ingenuity is often necessary in order to make out any adaptation at all. The temptation to accept the view that everything depends upon internal directing causes is therefore all the greater. Nägeli indeed looks at the subject from the opposite point of view, and considers that the true underlying cause of transformation is in animals obscured by adaptation, but is more apparent in plants [178]. Sufficient justification for this opinion cannot, however, be furnished by the fact that in plants many characters have not been as yet explained by adaptation. We should do well to remember the extent to which the number of so-called ‘morphological' characters in plants has been lessened during the last twenty years. What a flood of light was thrown upon the forms and colours of flowers, so often curious and apparently arbitrary, when Sprengel's long-neglected discovery was extended and duly appreciated as the result of Darwin's investigations, and when the subject was further advanced by Hermann Müller's admirable researches! Even the venation of leaves, which was formerly considered to be entirely without significance, has been shown to possess a high biological value by the ingenious investigations of J. Sachs (see Appendix III, p. 308). We have not yet reached the limits of investigation, and no reason can be assigned for the belief that we shall not some day receive an explanation of characters which are now unintelligible [179].

It is obvious that the zoologist cannot lay too much stress upon the intimate connexion between form and function, a connexion which extends to the minutest details: it is almost impossible to insist too much upon the perfect manner in which adaptation to certain conditions of life is carried out in the animal body. In the animal body we find nothing without a meaning, nothing which might be otherwise; each organ, even each cell or part of a cell is, as it were, tuned for the special part it has to perform in relation to the surroundings.

It is true that we are as yet unable to explain the adaptive character of every structure in any single species, but whenever we succeed in making out the significance of a structure, it always proves to be a fresh example of adaptation. Any one who has attempted to study the structure of a species in detail, and to account for the relation of its parts to the functions of the whole, will be altogether inclined to believe with me that everything depends upon adaptation. There is no part of the body of an individual or of any of its ancestors, not even the minutest and most insignificant part, which has arisen in any other way than under the influence of the conditions of life; and the parts of the body conform to these conditions, as the channel of a river is shaped by the stream which flows over it.

These are indeed only convictions, not real proofs; for we are not yet sufficiently intimately acquainted with any species to be able to recognize the nature and meaning of all the details of its structure, in all their relations: and we are still less able to trace the ancestral history in each case, and to make out the origin of those structures of which the presence in the descendants depends primarily upon heredity. But already a fair advance towards the attainment of inductive proof has been made; for the number of adaptations which have been established is now very large and is increasing every day. If, however, we anticipate the results of future researches, and admit that an organism only consists of adaptations, based upon an ancestral constitution, it is obvious that nothing remains to be explained by a phyletic force, even though the latter be presented to us in the refined form of Nägeli's self-changing idioplasm.

It will perhaps be useful to illustrate my views by a familiar example. I choose the well-known group of the whales. These animals are placental mammals, which, probably in secondary times, arose from terrestrial Mammalia, by adaptation to an aquatic life.

Everything that is characteristic of these animals and distinguishes them from other mammals depends upon this adaptation. Their fore-limbs have been transformed into rigid paddles, only movable at the shoulder-joint; upon the back and the tail there are ridges with a form somewhat similar to the dorsal and caudal fins of fishes. The organ of hearing is without any external ear and without an air-containing external auditory meatus. The aerial vibrations do not pass, as in other mammals, from the external auditory passage to the tympanic cavity and thus to the nerve-terminations of the inner ear; but they reach the tympanic cavity by direct transmission through the bones of the skull, which possess a special structure and contain abundant air-cavities. This arrangement is obviously adapted for hearing in water. The nostrils also exhibit peculiarities, for they do not open near the mouth, but upon the forehead, so that the animal can breathe, even in a rough sea, as soon as it comes to the surface. In order to facilitate rapid movement in water, the whole body has become extended in length, and spindle-shaped, like the body of a fish. The hind limbs are absent in no other mammals, the fish-like Sirenia  being alone excepted. In the whales, as in the Sirenia, these appendages have become useless, owing to the powerfully developed tail-fin; they are now rudimentary and consist of some small bones and muscles deeply buried in the body of the animal, which nevertheless, in certain species, still exhibit the original structure of the hind-limb. The hairy covering of other mammals has also disappeared, its place having been taken by a thick layer of fat beneath the skin, which affords a much better protection against cold. This fatty layer was also necessary in order to diminish the specific gravity of the animal, and to thus render it equal to that of sea-water. In the structure of the skull there are also a number of peculiarities, all of which are directly or indirectly connected with the conditions under which these animals live. In the whalebone whales, the enormous size of the face, the immense jaws, and wide mouth are very striking. Can it be suggested that this very characteristic appearance is entirely due to the guidance of some internal transforming force, or to some spontaneous modification of the idioplasm? Any such suggestion cannot be accepted, for it is easy to show that all these structural features depend upon adaptation to a peculiar mode of feeding. Functional teeth are absent, but rudimentary ones exist in the embryo as relics of an ancestral condition in which these organs were fully developed. Large plates of whalebone with finely divided ends are suspended vertically from the roof of the mouth. These whales feed upon small organisms, about an inch in length, which swim or float upon the water in countless numbers; and in order that they may subsist upon such minute animals, it is necessary to obtain them in immense numbers. This is achieved by means of the huge mouth which takes in a vast quantity of water at a single mouthful. The water then filters away through the plates of whalebone, while the organisms which form the whale's food remain stranded in the mouth. Is it necessary to add that the internal organs—so far as we understand the details of their functions, and so far as their structure differs from that of the corresponding organs in other Mammalia—have also been directly or indirectly modified by adaptation to an aquatic life? Thus all whales possess a very peculiar arrangement of the nasal passages and larynx, enabling them to breathe and swallow at the same time: the lungs are of enormous length, and thus cause the animal to assume a horizontal position in the water without the exercise of muscular effort: in consequence of this latter modification, the diaphragm extends in a nearly horizontal direction: there are moreover certain arrangements in the vascular system which enable the animal to remain under water for a considerable time, and so on.

And now, in reference to this special example, I will repeat the question which I have asked before:—‘If everything that is characteristic of a group of animals depends upon adaptation, what remains to be explained by the operation of an internal developmental force?' What remains of a whale when we have taken away its adaptive characters? We are compelled to reply that nothing remains except the general plan of mammalian organization, which existed previously in the mammalian ancestors of the Cetacea. But if everything which stamps these animals as whales has arisen by adaptation, it follows that the internal developmental force cannot have had any share in the origin of this group.

And yet this very force is said to be the main factor in the transformation of species, and Nägeli unhesitatingly asserts that both the animal and vegetable kingdoms would have become very much as they now are, if there had been no adaptation to new conditions, and no such thing as competition in the struggle for existence [180].

But even if we admit that such an assumption affords some explanation, instead of being the renunciation of all attempts at explanation; if we admit that an organism, the characteristic peculiarities of which entirely depend upon adaptation, has been formed by an internal developmental force; we should still be unable to explain how it happens that such an organism, suited to certain conditions of life, and unable to exist under other conditions, appeared at that very place on the earth's surface, and at that very time in the earth's history, which offered the conditions appropriate for its existence. As I have previously argued, the believers in an internal developmental force are compelled to invent an auxiliary hypothesis, a kind of ‘pre-established harmony' which explains how it is that changes in the organic world advance step by step, parallel with changes in the crust of the earth and in other conditions of life; just as, according to Leibnitz, body and soul, although independent of each other, proceed along parallel courses, like two chronometers which keep perfect time. And even this supposition would not be sufficient, because the place must be taken into account as well as the time: thus the whales could not have existed if they had first appeared upon dry land. We know of countless instances in which a species is exclusively and precisely adapted to a certain localized area, and could not thrive anywhere else. We have only to remember the cases of mimicry in which one insect gains protection by resembling another, the cases of protective resemblance to the bark or the leaves of a certain species of plant, or the numerous marvellous adaptations of parasitic animals to certain parts of certain species of hosts.

A mimetic species cannot have appeared at any place other than that in which it exists: it cannot have arisen through an internal developmental force. But if single species, or even whole orders like the Cetacea, have arisen independently of any such force, then we may safely assert that the existence of the supposed force is neither required by reason nor necessity.

Hence, abstaining from the invocation of unknown forces, we are justified in carrying on Darwin's attempt to explain the transformation of organisms by the action of known forces and known phenomena. I say ‘carry on the attempt,' because I do not believe that our knowledge in this direction has ended with Darwin, and it seems to me that we have already arrived at ideas which are incompatible with certain important points in his general theory, and which therefore necessitate some modification of the latter.

The theory of natural selection explains the rise of new species by supposing that changes occur, from time to time, in those conditions of life to which an organism must adapt itself if it is to continue in existence. Thus a selective process is set up which ensures that only those out of the existing variations are preserved, which correspond in the highest degree to the changed conditions of life. By continued selection in the same direction the deviations from the type, although at first very insignificant, are accumulated and increased until they become specific differences.

I should wish to assert more definitely than Darwin has done, that alterations in the conditions of life, together with changes in the organism itself, must have advanced very gradually and by the smallest steps, in such a way that, at each period in the whole process of transformation, the species has remained sufficiently adapted to the surrounding conditions. An abrupt transformation of a species is inconceivable, because it would render the species incapable of existence. If the whole organization of an animal depends upon adaptation, if the animal body is, as it were, an extremely complex combination of new and old adaptations, it would be a highly remarkable coincidence if, after any sudden alteration occurring simultaneously in many parts of the body, all these parts were changed in such a manner that they again formed a whole which exactly corresponded to the altered external conditions. Those who assume the existence of such a sudden transformation overlook the fact that everything in the animal body is exactly calculated to maintain the existence of the species, and that it is just sufficient for this purpose; and they forget that the minutest change in the least important organ may be enough to render the species incapable of existence.

It may perhaps be objected that the case is different in plants, as is proved by the American weeds which have spread all over Europe, or the European plants which have become naturalized in Australia. Reference might also be made to the plants which inhabited the plains during the glacial epoch, and which at its close migrated to the Alpine mountains and to the far north, and which have remained unaltered under the apparently diverse conditions of life to which they have been subjected for so long a time. Similar instances may also be found among animals. The rabbit, which was brought by sailors to the Atlantic island of Porto Santo, has bred abundantly and remains unchanged in this locality; the European frogs, which were introduced into Madeira, have increased immensely and have become almost a plague; and the European sparrow now thrives in Australia quite as well as with us. But these instances do not prove that adaptation to external conditions of life is not of primary importance; they do not prove that an organism which is adapted to a certain environment will, when unmodified, remain capable of existence amid new surroundings. They only prove that the above-mentioned species found in those countries the same conditions of life as at home, or at least that they met with conditions to which their organization could be subjected without the necessity for modification. Not every new environment includes such changed conditions as will be effective in modifying every species of plant or animal. The rabbit of Porto Santo certainly feeds on herbs different from those which form the food of its relations in Europe, but such a change does not mean an effective alteration in the conditions under which this species lives, for the herbs in both localities are equally well suited to the needs of the animal.

But if we suppose that the wild rabbit, occurring in Europe, were to suddenly lose but a trifle of its wariness, its keen sight, its fine sense of hearing or of smell, or were to suddenly acquire a colour different from that which it now possesses, it would become incapable of existence as a species, and would soon die out. The same result would probably occur if any of its internal organs, such as the lungs or the liver, were suddenly modified. Perhaps single individuals would still remain capable of existence under these circumstances, but the whole species would suffer a certain decline from the maximum development of its powers of resistance, and would thus become extinct. The sudden transformation of a species appears to me to be inconceivable from a physiological point of view, at any rate in animals.

Hence the transformation of a species can only take place by the smallest steps, and must depend upon the accumulation of those differences which characterise individuals, or, as we call them, ‘individual differences.' There is no doubt that these differences are always present, and thus, at first sight, it appears to be simply a matter of course that they will afford the material by means of which natural selection produces new forms of life. But the case is not so simple as it appeared to be until recently; that is if I am right in believing that in all animals and plants which are reproduced by true germs, only those characters which were potentially present in the germ of the parent can be transmitted to the succeeding generation.

I believe that heredity depends upon the fact that a small portion of the effective substance of the germ, the germ-plasm, remains unchanged during the development of the ovum into an organism, and that this part of the germ-plasm serves as a foundation from which the germ-cells of the new organism are produced [181]. There is therefore continuity of the germ-plasm from one generation to another. One might represent the germ-plasm by the metaphor of a long creeping root-stock from which plants arise at intervals, these latter representing the individuals of successive generations.

Hence it follows that the transmission of acquired characters is an impossibility, for if the germ-plasm is not formed anew in each individual but is derived from that which preceded it, its structure, and above all its molecular constitution, cannot depend upon the individual in which it happens to occur, but such an individual only forms, as it were, the nutritive soil at the expense of which the germ-plasm grows, while the latter possessed its characteristic structure from the beginning, viz. before the commencement of growth.

But the tendencies of heredity, of which the germ-plasm is the bearer, depend upon this very molecular structure, and hence only those characters can be transmitted through successive generations which have been previously inherited, viz. those characters which were potentially contained in the structure of the germ-plasm. It also follows that those other characters which have been acquired by the influence of special external conditions, during the life-time of the parent, cannot be transmitted at all.

The opposite view has, up to the present time, been maintained, and it has been assumed, as a matter of course, that acquired characters can be transmitted; furthermore, extremely complicated and artificial theories have been constructed in order to explain how it may be possible for changes produced by the action of external influences, in the course of a life-time, to be communicated to the germ and thus to become hereditary. But no single fact is known which really proves that acquired characters can be transmitted, for the ascertained facts which seem to point to the transmission of artificially produced diseases cannot be considered as a proof; and as long as such proof is wanting we have no right to make this supposition, unless compelled to do so by the impossibility of suggesting a mode in which the transformation of species can take place without its aid. (See Appendix IV, p. 310.)

It is obvious that the unconscious conviction that we need the aid of acquired characters has hitherto securely maintained the assumed axiom of the transmission of such features. It was believed that we could not do without such an axiom in order to explain the transformation of species; and this was believed not only by those who hold that the direct action of external influences plays an important part in the process, but also by those who hold that the operation of natural selection is the main factor.

Individual variability forms the most important foundation of the theory of natural selection: without it the latter could not exist, for this alone can furnish the minute differences by the accumulation of which new forms are said to arise in the course of generations. But how can such hereditary individual characters exist if the changes wrought by the action of external influences, during the life of an individual, cannot be transmitted? We are clearly compelled to find some other source of hereditary individual differences, or the theory of natural selection would collapse, as it certainly would if hereditary individual variations did not exist. If, on the other hand, acquired differences are transmitted, this would prove that there must be something wrong in the theory of the continuity of the germ-plasm, as above described, and in the non-transmission of acquired characters which results from this theory. But I believe that it is possible to suggest that the origin of hereditary individual characters takes place in a manner quite different from any which has been as yet brought forward. To explain this origin is the task which I am about to undertake in the following pages.

The origin of individual variability has been hitherto represented somewhat as follows. The phenomena of heredity lead to the conclusion that each organism is capable of producing germs, from which, theoretically at least, exact copies of the parent may arise. In reality this is never the case, because each organism possesses the power of reacting on the different external influences with which it is brought into contact, a power without which it could neither develope nor exist. Each organism reacting in a different way must be to some extent changed. Favourable nutrition makes such an organism strong and large; unfavourable nutrition renders it small and weak, and what is true of the whole organism may also be said of its parts. Now it is obvious that even the children of the same mother meet with influences different in kind and degree, from the very beginning of their existence, so that they must necessarily become unlike, even if we suppose them to have been derived from absolutely identical germs, with precisely the same hereditary tendencies.

In this manner individual differences are believed to have been introduced. But if acquired characters are not transmitted the whole chain of argument collapses, for none of those changes which are caused by the conditions of nutrition acting upon single parts of the whole organism, including the results of training and of the use or disuse of single organs,—none of these changes can furnish hereditary differences, nor can they be transmitted to succeeding generations. They are, as it were, only transient characters as far as the species is concerned.

The children of accomplished pianists do not inherit the art of playing the piano; they have to learn it in the same laborious manner as that by which their parents acquired it; they do not inherit anything except that which their parents also possessed when children, viz. manual dexterity and a good ear. Furthermore, language is not transmitted to our children, although it has been practised not only by ourselves but by an almost endless line of ancestors. Only recently, facts have again been worked up and brought together, which show that children of highly civilized nations have no trace of a language when they have grown up in a wild condition and in complete isolation [182]. The power of speech is an acquired or transient character: it is not inherited, and cannot be transmitted: it disappears with the organism which manifests it. Not only do similar phenomena occur in the vegetable kingdom, but they present themselves in an especially striking manner.

When Nägeli [183] introduced Alpine plants, taken from their natural habitat, into the botanical garden at Munich, many of the species were so greatly altered that they could hardly be recognized: for instance, the small Alpine hawk-weeds became large and thickly branching, and they blossomed freely. But if such plants, or even their descendants, were removed to a poor gravelly soil the new characters entirely disappeared, and the plants were re-transformed into the original Alpine form. The re-transformation was always complete, even when the species had been cultivated in rich garden soil for several generations.

Similar experiments with identical results were made twenty years ago by Alexis Jordan [184], who chiefly made use of Draba verna  in his researches. These experiments furnish very strong proofs, because they were originally undertaken without the bias which may be given by a theory. Jordan only intended to decide experimentally whether the numerous forms of the plant, as it occurs wild in different habitats, are mere varieties or true species. He found that the different forms do not pass into one another, and are in all cases re-transformed after they have been altered by cultivation in a soil different from that in which they usually grow, and he therefore assumed that they were true species. All these experiments therefore confirm the conclusion that external influences may alter the individual, but that the changes produced are not transmitted to the germs, and are never hereditary.

Nägeli indeed asserts that innate individual differences do not exist in plants. The differences which we find, for instance, between two beeches or oaks, are always, according to him, modifications produced by the influence of varying local conditions. But it is obvious that Nägeli goes too far in this respect, although it may be conceded that innate individual differences in plants are much more difficult to distinguish from those which are acquired, than in animals.

There is no doubt about the occurrence of innate and hereditary individual characters in animals, and we may find an especially interesting illustration in the case of man. The human eye can with practice appreciate the most minute differences between individual men, and especially differences of feature. Every one knows that peculiarities of feature persist in certain families through a long series of generations. I need hardly remind the reader of the broad forehead of the Julii, the projecting chin of the Hapsburgs, or the curved nose of the Bourbons. Hence every one can see that hereditary individual characters do unquestionably exist in man. The same conclusion may be affirmed with equal certainty for all our domestic animals, and I do not see any reason why there should be any doubt about its application to other animals and to plants.

But now the question arises,—How can we explain the presence of such characters consistently with a belief in the continuity of the germ-plasm, a theory which implies the rejection of the supposition that acquired characters can become hereditary? How can the individuals of any species come to possess various characters which are undoubtedly hereditary, if all changes which are due to the influence of external conditions are transient and disappear with the individual in which they arose? Why is it that individuals are distinguished by innate characters, as well as by those which I have previously called transient, and how can deep-seated hereditary characters arise at all, if they are not produced by the external influences to which the individual is exposed?

In the first place it may be argued that external influences may not only act on the mature individual, or during its development, but that they may also act at a still earlier period upon the germ-cell from which it arises. It may be imagined that such influences of different kinds might produce corresponding minute alterations in the molecular structure of the germ-plasm, and as the latter is, according to our supposition, transmitted from one generation to another, it follows that such changes would be hereditary.

Without altogether denying that such influences may directly modify the germ-cells, I nevertheless believe that they have no share in the production of hereditary individual  characters.

The germ-plasm or idioplasm of the germ-cell (if this latter term be preferred) certainly possesses an exceedingly complex minute structure, but it is nevertheless a substance of extreme stability, for it absorbs nourishment and grows enormously without the least change in its complex molecular structure. With Nägeli we may indeed safely affirm so much, although we are unable to acquire any direct knowledge as to the constitution of germ-plasm. When we know that many species have persisted unchanged for thousands of years, we have before us the proof that their germ-plasm has preserved exactly the same molecular structure during the whole period. I may remind the reader that many of the embalmed bodies of the sacred Egyptian animals must be four thousand years old, and that the species are identical with those now existing in the same locality. Now, since the quantity of germ-plasm contained in a single germ-cell must be very minute, and since only a very small fraction can remain unchanged when the germ-cell developes into an organism, it follows that an enormous growth of this small fraction must take place in every individual, for it must be remembered that each individual produces thousands of germ-cells. It is therefore not too much to say that, during a period of four thousand years, the growth of the germ-plasm in the Egyptian ibis or crocodile must have been quite stupendous. But in the animals and plants which inhabit the Alps and the far north, we have instances of species which have remained unchanged for a much longer period, viz. for the time which has elapsed between the close of the glacial epoch and the present day. In such organisms the growth of the germ-plasm must therefore have been still greater.

If nevertheless the molecular structure of the germ-plasm has remained precisely the same, this substance cannot be readily modifiable, and there is very little chance of the smallest changes being produced in its molecular structure, by the operation of those minute transient variations in nutrition to which the germ-cells, together with every other part of the organism, are exposed. The rate of growth of the germ-plasm will certainly vary, but its structure is unlikely to be affected for the above-mentioned reasons, and also because the influences are mostly changeable, and occur sometimes in one and sometimes in another direction.

Hereditary individual differences must therefore be derived from some other source.

I believe that such a source is to be looked for in the form of reproduction by which the great majority of existing organisms are propagated: viz. in sexual, or, as Häckel calls it, amphigonic reproduction.

It is well known that this process consists in the coalescence of two distinct germ-cells, or perhaps only of their nuclei. These germ-cells contain the germ-substance, the germ-plasm, and this again, owing to its specific molecular structure, is the bearer of the hereditary tendencies of the organism from which the germ-cell has been derived. Thus in amphigonic reproduction two groups of hereditary tendencies are as it were combined. I regard this combination as the cause of hereditary individual characters, and I believe that the production of such characters is the true significance of amphigonic reproduction. The object of this process is to create those individual differences which form the material out of which natural selection produces new species.

At first sight this conclusion appears to be very startling and almost incredible, because we are on the contrary inclined to believe that the continued combination of existing differences, which is implied by the very existence of amphigonic reproduction, cannot lead to their intensification, but rather to their diminution and gradual obliteration. Indeed the opinion has already been expressed that deviations from the specific type are rapidly destroyed by the operation of sexual reproduction. Such an opinion may be true with regard to specific characters, because the deviations from a specific type occur in such rare cases that they cannot hold their ground against the large number of normal individuals. But the case is different with those minute differences which are characteristic of individuals, because every individual possesses them, although of a different kind and degree. The extinction of such differences could only take place if a few individuals constituted a whole species; but the number of individuals which together represent a species is not only very large but generally incalculable. Cross-breeding between all individuals is impossible, and hence the obliteration of individual differences is also impossible.

In order to explain the effects of sexual reproduction, we will first of all consider what happens in monogonic or unisexual reproduction, which actually occurs in parthenogenetic organisms. Let us imagine an individual producing germ-cells, each of which may by itself develope into a new individual. If we then suppose a species to be made up of individuals which are absolutely identical, it follows that their descendants must also remain identical through any number of generations, if we neglect the transient non-transmissible peculiarities caused by differences of food and other external conditions.

Although the individuals of such a species might be actually different, they would be potentially identical: in the mature state they might differ, but they must have been identical in origin. The germs of all of them must contain exactly the same hereditary tendencies, and if it were possible for their development to take place under exactly the same conditions, identical individuals would be produced.

Let us now assume that the individuals of such a species, reproducing itself by the monogonic process and therefore without cross-breeding, differ, not only in transient but also in hereditary characters. If this were the case, each individual would produce descendants possessing the same hereditary differences which were characteristic of itself; and thus from each individual a series of generations would emanate, the single individuals of which would be potentially identical with each other and with their first ancestor. Hence the same individual differences would be repeated again and again, in each succeeding generation, and even if all the descendants lived to reproduce themselves, there would be at last just as many groups of potentially identical individuals as there were single individuals at the beginning.

Similar cases actually occur in many species in which sexual reproduction has been entirely replaced by the parthenogenetic method, as in many species of Cynips  and in certain lower Crustacea. But all these differ from our hypothetical case in one important respect; it is always impossible for all the descendants to reach maturity and reproduce themselves. The vast majority of the descendants generally perish at an early stage, and only about as many remain to continue the species as reached maturity in the preceding generation.

We have now to consider whether such a species can be subject to the operation of natural selection. Let us take the case of an insect living among green leaves, and possessing a green colour as a protection against discovery by its enemies. We will assume that the hereditary individual differences consist of various shades of green. Let us further suppose that the sudden extinction of its food-plant compelled this species to seek another plant with a somewhat different shade of green. It is clear that such an insect would not be completely adapted to the new environment. It would therefore be compelled, metaphorically speaking, to endeavour to bring its colour into closer harmony with that of the new food-plant, or else the increased chances of detection given to its enemies would lead to its slow but certain extinction.

It is obvious that such a species would be altogether unable to produce the required adaptation, for ex hypothesi, its hereditary variations remain the same, one generation after another. If therefore the required shade of green was not previously present, as one of the original individual differences, it could not be produced at any time. If, however, we suppose that such a colour existed previously in certain individuals, it follows that those with other shades of green would be gradually exterminated, while the former would alone survive. But this process would not be an adaptation in the sense used in the theory of natural selection. It would indeed be a process of selection, but it could form no more than the beginning of that process which we call natural selection. If the latter could only bring existing characters into prominence, it would not be worth much consideration, for it could never produce a new species. A species never includes, from the beginning, individuals which deviate from the specific type as widely as the individuals of the most nearly allied species deviate from it. And it would be still less possible to explain, on such a principle, the origin of the whole organic world; for, if so, all existing species would have been included as variations of the first species. Natural selection must be able to do infinitely more than this, if it is to be of any importance as a principle of development. It must be able to accumulate minute existing differences in the required direction, and thus to create new characters. In our example it ought to be able, after preserving those individuals with a colour nearest to the required shade, to lead their descendants onward through successive stages towards a complete harmony of colour.

But such a result is quite unattainable with the asexual method of reproduction: in other words, natural selection, in the true meaning of the term, viz. a process which could produce new characters in the manner above described, is an impossibility in a species propagated by asexual reproduction.

If it could be shown that a purely parthenogenetic species had become transformed into a new one, such an observation would prove the existence of some force of transformation other than selective processes, for the new species could not have been produced by these latter. As already explained, the only selection which would be possible for such a species, would lead to the survival of one group of individuals and to the extinction of all others. Thus in our example that group of individuals would alone survive, the ancestors of which originally possessed the appropriate colour. But if one group alone survived, it follows that all hereditary individual differences would have disappeared from the species, for the members of such a single group are identical with one another and with their original ancestors. We thus reach the conclusion that monogonic reproduction can never cause hereditary individual variability, but that, on the other hand, it is very likely to lead to its entire suppression.

But the case is very different with sexual reproduction. When once individual differences have begun to appear in a species propagated by this process, uniformity among its individuals can never again be reached. So far from this being the case, the differences must even be increased in the course of generations, not indeed in intensity, but in number, for new combinations of the individual characters will continually arise.

Again, assuming the existence of a number of individuals which differ from one another by a few hereditary individual characters, it follows that no individual of the second generation can be identical with any other. They must all differ, not only actually but also potentially, for their differences exist at the very beginning of development, and do not solely depend upon the accidental conditions under which they live. Moreover, no one of the descendants can be identical with any of the ancestors, for each of the former unites within itself the hereditary tendencies of two parents, and its organism is therefore, as it were, a compromise between two developmental tendencies. Similarly in the third generation, the hereditary tendencies of two individuals of the second generation enter into combination. But since the germ-plasm of the latter is not simple, but composed of two individually distinct kinds of germ-plasm, it follows that an individual of the third generation is a compromise between four different hereditary tendencies. In the fourth generation, eight; in the fifth, sixteen; in the sixth, thirty-two different hereditary tendencies must come together, and each of them will make itself more or less felt in some part of the future organism. Thus by the sixth generation a large number of varied combinations of ancestral individual characters will appear, combinations which have never existed before and which can never exist again.

We do not know the number of generations over which the specific hereditary tendencies of the first generation can make themselves felt. Many facts seem to indicate however that the number is large, and it is at all events greater than six. When we remember that, in the tenth generation, a single germ contains 1024 different germ-plasms, with their inherent hereditary tendencies, it is quite clear that continued sexual reproduction can never lead to the re-appearance of exactly the same combination, but that new ones must always arise.

New combinations are all the more probable because the different idioplasms composing the germ-plasm in the germ-cells of any individual are present in different degrees of intensity at different times of its life; in other words, the intensity of the component idioplasms is a function of time. This conclusion follows from the fact that children of the same parents are never exactly identical. In one child the characters of the father may predominate, in another those of the mother, in another again those of either grand-parent or great-grand-parent.

We are thus led to the conclusion that even in a few sexually produced generations a large number of well-marked individuals must arise: and this would even be true of generations springing from our hypothetical species, assumed to be without ancestors, and characterised by few individual differences. But of course organisms which reproduce themselves sexually are never without ancestors, and if these latter were also propagated by the sexual method, it follows that each generation of every sexual species is in the stage which we have previously assumed for the tenth or some much later generation of the hypothetical species. In other words, each individual contains a maximum of hereditary tendencies and an infinite variety of possible individual characters (see Appendix VI, p. 326).

In this manner we can explain the origin of hereditary individual variability as it is known in man and the higher animals, and as it is required for the theory which explains the transformation of species by means of natural selection.

Before proceeding further, I must attempt to answer a question which obviously suggests itself. For the sake of argument, I have assumed the existence of a first generation, of which the individuals were already characterised by individual differences. Can we find any explanation of these latter, or are we compelled to take them for granted, without any attempt to enquire into their origin? If we abandon this enquiry, we can never achieve a complete solution of the problems of heredity and variability. We have, it is true, shown that hereditary differences, when they have once appeared, would, through sexual reproduction, undergo development into the diverse forms which actually exist; but this conclusion affords us no explanation of the source whence such differences have been derived. If the external conditions acting directly upon an organism can only produce transient (viz. non-hereditary) differences in the latter, and if, on the other hand, the external influences which act upon the germ-cell can only produce a change in its molecular structure after operating over very long periods, it seems that we have exhausted all the possible sources of hereditary differences without reaching any satisfactory explanation.

I believe, however, that an explanation can be given. The origin of hereditary individual variability cannot indeed be found in the higher organisms—the Metazoa and Metaphyta; but it is to be sought for in the lowest—the unicellular organisms. In these latter the distinction between body-cell and germ-cell does not exist. Such organisms are reproduced by division, and if therefore any one of them becomes changed in the course of its life by some external influence, and thus receives an individual character, the method of reproduction ensures that the acquired peculiarity will be transmitted to its descendants. If, for instance, a Protozoon, by constantly struggling against the mechanical influence of currents in water, were to gain a somewhat denser and more resistent protoplasm, or were to acquire the power of adhering more strongly than the other individuals of its species, the peculiarity in question would be directly continued on into its two descendants, for the latter are at first nothing more than the two halves of the former. It therefore follows that every modification which appears in the course of its life, every individual character, however it may have arisen, must necessarily be directly transmitted to the two offspring of a unicellular organism.

The pianist, whom I have already used as an illustration, may by practice develope the muscles of his fingers so as to ensure the highest dexterity and power; but such an effect would be entirely transient, for it depends upon a modification in local nutrition which would be unable to cause any change in the molecular structure of the germ-cells, and could not therefore produce any effect upon the offspring. And even if we admit that some change might be caused in the germ-cells, the chances would be infinity to nothing against the production of the appropriate effect, viz. such a change as would lead to the development in the child of the acquired characters of the parent.

In the lowest unicellular organisms, however, the case is entirely different. Here parent and offspring are still, in a certain sense, one and the same thing: the child is a part, and usually half, of the parent. If therefore the individuals of a unicellular species are acted upon by any of the various external influences, it is inevitable that hereditary individual differences will arise in them; and as a matter of fact it is indisputable that changes are thus produced in these organisms, and that the resulting characters are transmitted. It has been directly observed that individual differences do occur in unicellular organisms,—differences in size, colour, form, and the number or arrangement of cilia. It must be admitted that we have not hitherto paid sufficient attention to this point, and moreover our best microscopes are only very rough means of observation when we come to deal with such minute organisms. Nevertheless we cannot doubt that the individuals of the same species are not absolutely identical.

We are thus driven to the conclusion that the ultimate origin of hereditary individual differences lies in the direct action of external influences upon the organism. Hereditary variability cannot however arise in this way at every stage of organic development, as biologists have hitherto been inclined to believe. It can only arise in the lowest unicellular organisms; and when once individual difference had been attained by these, it necessarily passed over into the higher organisms when they first appeared. Sexual reproduction coming into existence at the same time, the hereditary differences were increased and multiplied, and arranged in ever-changing combinations.

Sexual reproduction can also increase the differences between individuals, because constant cross-breeding must necessarily and repeatedly lead to a combination of forces which tend in the same direction, and which may determine the constitution of any part of the body. If, for instance, the same part of the body is strongly developed in both parents, the experience of breeders tells us that the part in question is likely to be even more strongly developed in the offspring; and that weakly developed parts will in the same manner tend to become still weaker. Amphigonic reproduction therefore ensures that every character which is subject to individual fluctuation must appear in many individuals with a strengthened degree of development, in many others with a development which is less than normal, while in a still larger number of individuals the average development will be reached. Such differences afford the material by means of which natural selection is able to increase or weaken each character according to the needs of the species. By the removal of the less well-adapted individuals, natural selection increases the chance of beneficial cross-breeding in the subsequent generations.

Every one must admit that, if a species came into existence having only a small number of individual differences which appeared in the different parts of different individuals, the number of differences would increase with each sexually produced generation, until all the parts in which the variations occurred had received a peculiar character in all individuals.

Moreover sexual reproduction not only adds to the number of existing differences, but it also brings them into new combinations, and this latter consequence is as important as the former.

The former consequence can hardly make itself felt in any existing species, because in them every part already possesses its peculiar character in all individuals. The second consequence is, however, more important, viz. the production of new combinations of individual characters by sexual reproduction; for, as Darwin has already pointed out, we must imagine that not only are single characters changed in the process of breeding, but that probably several, and perhaps very many characters, are simultaneously modified. No two species, however nearly allied, differ from each other in but a single character. Even our eyesight, which has by no means reached the highest pitch of development, can always detect several, and often very many points of difference; and if we possessed the powers necessary for making an absolutely accurate comparison, we should probably find that everything is different in two nearly allied species.

It is true that a great number of these differences depend upon correlation, but others must depend upon simultaneous primary changes.

A large butterfly (Kallima paralecta ), found in the East Indian forests, has often been described in its position of rest as almost exactly resembling a withered leaf; the resemblance in colour being aided by the markings which imitate the venation of a leaf. These markings are composed of two parts, the upper of which is on the fore-wings, while the lower one is on the hind wings. The butterfly when at rest must therefore keep the wings in such a position that the two parts of each marking exactly correspond, for otherwise the character would be valueless; and as a matter of fact the wings are held in the appropriate position, although the butterfly is of course unconscious of what it is doing. Hence a mechanism must exist in the insect's brain which compels it to assume this attitude, and it is clear that the mechanism cannot have been developed before the peculiar manner of holding the wings became advantageous to the butterfly, viz. before the similarity to a leaf had made its first appearance. Conversely, this latter resemblance could not develope before the butterfly had gained the habit of holding its wings in the appropriate position. Both characters must therefore have come into existence simultaneously, and must have undergone increase side by side: the marking progressing from an imperfect to a very close similarity, while the position of the wings gradually approached the attitude which was exactly appropriate. The development of certain minute structural elements of the central nervous system, and the appropriate distribution of colouring matter on the wings, must have taken place simultaneously, and only those individuals have been selected to continue the species which possessed the favourable variations in both these directions.

It is, however, obvious that sexual reproduction will readily afford such combinations of required characters, for by its means the most diverse features are continually united in the same individual, and this seems to me to be one of its most important results.

I do not know what meaning can be attributed to sexual reproduction other than the creation of hereditary individual characters to form the material upon which natural selection may work. Sexual reproduction is so universal in all classes of multicellular organisms, and nature deviates so rarely from it, that it must necessarily be of pre-eminent importance. If it be true that new species are produced by processes of selection, it follows that the development of the whole organic world depends on these processes, and the part that amphigony has to play in nature, by rendering selection possible among multicellular organisms, is not only important, but of the very highest imaginable importance.

But when I maintain that the meaning of sexual reproduction is to render possible the transformation of the higher organisms by means of natural selection, such a statement is not equivalent to the assertion that sexual reproduction originally came into existence in order to achieve this end. The effects which are now produced by sexual reproduction did not constitute the causes which led to its first appearance. Sexual reproduction came into existence before it could lead to hereditary individual variability. Its first appearance must therefore have had some other cause; but the nature of this cause can hardly be determined with any degree of certainty or precision from the facts with which we are at present acquainted. The general solution of the problem will, however, be found to lie in the conjugation of unicellular organisms, which forms the precursor of true sexual reproduction. The coalescence of two unicellular individuals which represents the simplest and therefore probably the most primitive form of conjugation, must have some directly beneficial effect upon the species in which it occurs.

Various assumptions may be made as to the nature of these beneficial effects, and it will be useful to consider in detail some of those suggestions which have been brought forward. Eminent biologists, such as Victor Hensen [185] and Edouard van Beneden [186], believe that conjugation, and indeed sexual reproduction generally, must be considered as ‘a rejuvenescence of life.' Bütschli also accepts this view, at any rate as regards conjugation. These authorities imagine that the wonderful phenomena of life, of which the underlying cause is still an unsolved problem, cannot be continued indefinitely by the action of forces arising from within itself, that the clock-work would be stopped after a longer or shorter time, that the reproduction of purely asexual organisms would cease, just as the life of the individual finally comes to an end, or as a spinning wheel comes to rest in consequence of friction, and requires a renewed impetus if its motion is to continue. In order that reproduction may continue without interruption, these writers believe that a rejuvenescence of the living substance is necessary, that the clock-work of reproduction must be wound up afresh; and they recognize such a rejuvenescence in sexual reproduction and in conjugation, or in other words in the fusion of two cells, whether in the form of germ-cells or of two unicellular organisms.

Edouard van Beneden expresses this idea in the following words:—‘Il semble que la faculté que possèdent les cellules, de se multiplier par division soit limitée: il arrive un moment où elles ne sont plus capables de se diviser ultérieurement, à moins qu'elles ne subissent le phénomène du rajeunissement par le fait de la fécondation. Chez les animaux et les plantes les seules cellules capables d'être rajeunies sont les œufs; les seules capables de rajeunir sont les spermatocytes. Toutes les autres parties de l'individu sont vouées à la mort. La fécondation est la condition de la continuité de la vie. Par elle le générateur échappe à la mort' (l. c., p. 405). Victor Hensen thinks it possible that the germ and its products are prevented from dying by means of normal fertilization: he says that the law which states that every egg must be fertilized, was formulated before the discovery of parthenogenesis and cannot now be maintained, but that we are nevertheless compelled to assume that even the most completely parthenogenetic species requires fertilization after many generations (l. c., p. 236).

If the theory of rejuvenescence be thoroughly examined, it will be found to be nothing more than the expression of the fact that sexual reproduction persists without any ascertainable limit. From the fact of its general occurrence, the conclusion is, however, drawn that asexual reproduction could not persist indefinitely as the only mode of reproduction in any species of animal. But proofs in support of this opinion are wanting, and it is very probable that it would never have been advanced if it had been possible to explain the general occurrence of sexual reproduction in any other way,—if we had been able to ascribe any other significance to this pre-eminently important process.

But quite apart from the fact that it is impossible to bring forward any proofs, the theory of rejuvenescence seems to me to be unsatisfactory in other ways. The whole conception of rejuvenescence, although very ingenious, has something uncertain about it, and can hardly be brought into accordance with the usual conception of life as based upon physical and mechanical forces. How can any one imagine that an Infusorian, which by continued division had lost its power of reproduction, could regain this power by forming a new individual, after fusion with another Infusorian, which had similarly become incapable of division? Twice nothing cannot make one. If indeed we could assume that each animal contained half the power necessary for reproduction, then both together would certainly form an efficient whole; but it is hardly possible to apply the term rejuvenescence to a process which is simply an addition, such as would be attained under other circumstances by mere growth; neglecting, for the present, that factor which, in my opinion, is of the utmost importance in conjugation,—the fusion of two hereditary tendencies. If rejuvenescence possesses any significance at all, it must be this,—that by its means a force, which did not previously exist in the conjugating individuals, is called into activity. Such a force would, however, owe its existence to latent energy stored up in each single animal during the period of asexual reproduction, and such latent forces would necessarily be of different natures, and of such a constitution that their union at the moment of conjugation would give rise to the active force of reproduction.

The process might perhaps be compared to the flight of two rockets, which by the combustion of some explosive substance (such as nitro-glycerine) stored up within themselves are impelled in such a direction that they would meet at the end of their course, when all the nitro-glycerine had been completely exhausted. The movement would then come to an end, unless the explosive material could have been meanwhile renewed. Now suppose that such a renewal were achieved by the formation of nitric acid in one of the rockets and glycerine in the other, so that when they came into contact nitro-glycerine would be formed afresh equal in quantity and in distribution on both the rockets to that which was originally present. In this way the movement would be renewed again and again with the same velocity, and might continue for ever.

Rejuvenescence can be rendered intelligible in theory by some such metaphor, but considerable difficulties are encountered in the rigid application of the metaphor to the facts of the case. In the first place, how is it possible that the motive force can be exhausted by continual division, while one of its components is being formed afresh in the same body and during the same time? When thoroughly examined the loss of the power of division is seen to follow from the loss of the powers of assimilation, nutrition, and growth. How is it possible that such a power can be weakened and finally entirely lost while one of its components is accumulated?

I believe that, instead of accepting such daring assumptions, it is better to be satisfied with the simple conception of living matter possessing as attributes the powers of unlimited assimilation and capacity for reproduction. With such a theory the mere form of reproduction, whether sexual or asexual, will have no influence upon the duration of the capacity: for force and matter undergo simultaneous increase, and are inseparably connected in this as in all other instances. This theory does not, however, exclude the possible occurrence of circumstances under which such an association is no longer necessary.

I could only consent to adopt the hypothesis of rejuvenescence, if it were rendered absolutely certain that reproduction by division could never under any circumstances persist indefinitely. But this cannot be proved with any greater certainty than the converse proposition, and hence, as far as direct proof is concerned, the facts are equally uncertain on both sides. The hypothesis of rejuvenescence is, however, opposed by the fact of parthenogenesis; for if fertilization possesses in any way the meaning of rejuvenescence, and depends upon the union of two different forms of force and of matter, which thus produce the power of reproduction, it follows that we cannot understand how it happens that the same power of reproduction may be sometimes produced from one form of matter, alone and unaided. Logically speaking, parthenogenesis should be as impossible as that either nitric acid or glycerine should separately produce the effect of nitro-glycerine. The supposition has indeed been made that in the case of parthenogenesis, one fertilization is sufficient for a whole series of generations, but this supposition is not only incapable of proof, but it is contradicted by the fact that certain eggs which may develope parthenogenetically are also capable of fertilization. If, in this case, the power of reproduction were sufficient for development, how is it that the egg is also capable of fertilization; and if the power were insufficient, how is it that the egg can develope parthenogenetically? And yet one and the same egg (in the bee) can develope into a new individual, with or without fertilization. We cannot escape this dilemma by making the further assumption, which is also incapable of proof, that a smaller amount of reproductive force is required for the development of a male individual than for the development of a female. It is true that the unfertilized eggs of the bee produce male individuals, while the fertilized ones develope into females, but in certain other species the converse association holds good, while in others, again, fertilization bears no relation to the sex of the offspring.

Although the mere fact that parthenogenesis occurs at all is, in my opinion, sufficient to disprove the theory of rejuvenescence, it is well to remember that parthenogenesis is now the only method of reproduction in many species (although we do not know the period of time over which these conditions have extended), and is nevertheless unattended by any perceptible decrease in fertility.

From all these considerations we may draw the conclusion that the process of rejuvenescence, as described above, cannot be accepted either as the existing or the original meaning of conjugation, and the question naturally arises as to what other significance this latter process can have possessed at its first beginning.

Rolph [187] has expressed the opinion that conjugation is a form of nutrition, so that the two conjugating individuals, as it were, devour each other. Cienkowsky [188] also regards conjugation as merely ‘accelerated' assimilation. There is, however, not only an essential difference but a direct contrast between the processes of conjugation and nutrition. With regard to Cienkowsky's view, Hensen [189] has well said that ‘coalescence in itself cannot be an accelerated nutrition, because even if we admit that both individuals are in want of nourishment, it is impossible that the need can be supplied by this process, unless one of them perishes and is really devoured.' In order that an animal may serve as the food of another, it must perish and must be brought into a fluid form, and finally it must be assimilated. In the case before us, however, two protoplasmic bodies are placed side by side and coalesce, without either of them passing into the liquid state. Two idioplasms unite, together with all the hereditary tendencies contained in them; but although it is certain that nutrition in the proper sense of the word cannot take place, because neither of the animals receives an addition of liquid food by the coalescence, yet the consequence of this process must be in one respect similar to that of nutrition and growth:—the mass of the body and the quantity of the forces contained in it undergo simultaneous increase. It is not inconceivable that effects are by this means rendered possible, which under the peculiar circumstances leading to conjugation, could not have been otherwise produced.

I believe that this is at any rate the direction in which we shall have to seek for the first meaning of conjugation and for its phyletic origin. This first result and meaning of conjugation may be provisionally expressed in the following formula:—conjugation originally signified a strengthening of the organism in relation to reproduction, which happened when from some external cause, such as want of oxygen, warmth, or food, the growth of the individual to the extent necessary for reproduction could not take place.

This explanation must not be regarded as equivalent to that afforded by the theory of rejuvenescence; for the latter process is said to be necessary for the continuance of reproduction, and ought therefore to occur periodically quite independently of external circumstances; while according to my theory, conjugation at first only occurred under unfavourable conditions, and assisted the species to overcome such difficulties.

But whatever the original meaning of conjugation may have been, it seems to have become already subordinated in the higher Protozoa, as is indicated by the changes in the course taken by this process. The higher Protozoa when conjugating do not as a rule coalesce completely and permanently [190] in the manner followed by the lower Protozoa, and it seems to me possible, or even probable, that in the former the process has already gained the full significance of sexual reproduction, and is to be looked upon as a source of variability.

Whether this be so or not, I believe it is certain that sexual reproduction could not have been entirely abandoned at any period since the time when the Metazoa and Metaphyta first arose; for they derived this form of reproduction from their unicellular ancestors.

We know that organs and characters which have persisted through a long series of generations are transmitted with extreme tenacity, even when they have ceased to be of any direct use to their immediate possessors. The rudimentary organs in various animals, and not least in man, afford very strong proofs of the soundness of this conclusion. Another example has only recently been discovered in the sixth finger, which has been shown to exist in the human embryo [191], a part which has only been present in a rudimentary form ever since the origin of the Amphibia [192]. Superfluous organs become rudimentary very slowly, and enormous periods must elapse before they completely disappear, while the older a character is, the more firmly it becomes rooted in the organism. What I have above called the physical constitution of a species is based upon these facts, and upon them depend the tout ensemble  of inherited characters, which are adapted to one another and woven together into a harmonious whole. It is this specific nature of an organism which causes it to respond to external influences in a manner different from that followed by any other organism, which prevents it from changing in any way except along certain definite lines of variation, although these may be very numerous. Furthermore these facts ensure that characters cannot be taken at random from the constitution of a species and others substituted for them. Such a variation as a mammal wanting the firm axis of the backbone is an impossibility, not only because the backbone is necessary as a support to the body, but chiefly because this structure has been inherited from times immemorial, and has become so impressed upon the mammalian organization that any variation so great as to threaten its very existence cannot now take place. The view here set forth of the origin of hereditary variability by amphigonic reproduction, makes it clear that an organism is in a state of continual oscillation only upon the surface, so to speak, while the fundamental parts of its constitution, which have been inherited from extremely remote periods, remain unaffected.

Thus sexual reproduction itself did not cease after it had existed in the form of conjugation through innumerable generations of the vast numbers of species which have been included under the Protozoa; it did not cease even when its original physiological significance had lost its importance, either completely or in part. This process, however, had come to possess a new significance which ensured its continuance, in the enormous advantage conferred on a species by the power of adapting itself to new conditions of life, a power which could only be preserved by means of this method of reproduction. The formation of new species which among the lower Protozoa could be achieved without amphigony, could only be attained by means of this process in the Metazoa and Metaphyta. It was only in this way that hereditary individual differences could arise and persist. It was impossible for amphigony to disappear, for each species in which it was preserved was necessarily superior to those which had lost it, and must have replaced them in the course of time; for the former alone could adapt itself to the ever-changing conditions of life, and the longer sexual reproduction endured, the more firmly was it necessarily impressed upon the constitution of the species, and the more difficult its disappearance became.

Sexual reproduction has nevertheless been lost in some cases, although only at first in certain generations. Thus in the Aphidae  and in many lower Crustacea, generations with parthenogenetic reproduction alternate with others which reproduce themselves by the sexual method. But in most cases it is clear that this partial loss of amphigony conferred considerable advantages upon the species by giving increased capabilities for the maintenance of existence. By means of partial parthenogenesis a much more rapid increase in the number of individuals could be attained in a given time, and this fact is of the highest importance for the peculiar circumstances under which these species exist. A species of Crustacean which inhabits rapidly drying pools, and developes from winter-eggs which have remained dried up in the mud, has, as a rule, only a very short time in which to secure the existence of succeeding generations. The few sexual eggs which have escaped the attacks of numerous enemies develope immediately after the first shower of rain; the animals attain their full size in a few days and reproduce themselves as virgin females. Their descendants are propagated in the same manner, and thus in a short time almost incredible numbers of individuals are formed, until finally the sexual eggs are again produced. If now the pool dries up again, the existence of the colony is secured, for the number of animals which produce sexual eggs is very large, and the eggs themselves are of course far more numerous, so that in spite of the destructive agencies to which they are subjected, there will be every chance of the survival of a sufficient number to produce a new generation at a later period. Here, therefore, sexual reproduction has not been abandoned accidentally or from any internal cause, but as an adaptation to certain definite necessities imposed upon the organism by its surroundings.

It is, however, well known that there are certain instances in which sexual reproduction has been altogether lost, and in which parthenogenesis is the only form of propagation. In the animal kingdom, such a condition chiefly occurs in species of which the closely-allied forms exhibit the above-mentioned alternation between parthenogenesis and amphigony, viz. in many Cynipidae  and Aphidae, and also in certain freshwater and marine Crustacea. We may imagine that these parthenogenetic species have arisen from forms with alternating methods of reproduction, by the disappearance of the sexual phase.

In any particular case, it may be difficult to point out the motive by which this change has been determined; but it is most probable that the same conditions which originally caused the intercalation of a parthenogenetic stage have been efficient in causing the gradual disappearance of the sexual stage. If a species of Crustacean, with the above-described alternating method of reproduction (heterogeny), were killed off by its enemies on a larger scale than before, it is obvious that the threatened extinction of the species could be checked by the attainment of a correspondingly greater degree of fertility. Such increased fertility might well be produced by pure parthenogenesis (see Appendix V, p. 323), by means of which the number of egg-producing individuals in all the previous sexual generations would be doubled.

In a certain sense, this would be the last and most extreme method by means of which a species might secure continued existence, for it is a method for which it would have to pay very dearly at a later period. If my theory as to the causes of hereditary individual variability be correct, it follows that all species with purely parthenogenetic reproduction are sure to die out; not, indeed, because of any failure in meeting the existing conditions of life, but because they are incapable of transforming themselves into new species, or, in fact, of adapting themselves to any new conditions. Such species can no longer be subject to the process of natural selection, because, with the disappearance of sexual reproduction, they have also lost the power of combining and increasing those hereditary individual characters which they possess.

All the facts with which we are acquainted confirm this conclusion, for whole groups of purely parthenogenetic species or genera are never met with, as would certainly be the case if parthenogenesis had been the only method of reproduction through a successional series of species. We always find it in isolated instances, and under conditions which compel the conclusion that it has become predominant in the species in question, and has not been transmitted from any preceding species.

There still remains a very different class of facts which, so far as we can judge, are in accordance with my theory as to the significance of sexual reproduction, and which may be quoted in its support. I refer to the condition of functionless organs in species with parthenogenetic reproduction.

Under the supposition that acquired characters cannot be transmitted—and this forms the foundation of the views here set forth—organs which are of no further use cannot become rudimentary in the direct and simple manner in which it has been hitherto imagined that degeneration takes place. It is true that an organ which does not perform any function exhibits a marked decrease of strength and perfection in the individual which possesses it, but such acquired degradation is not transmitted to its descendants, and we must therefore look for some other explanation of the firmly established fact that organs do become rudimentary through a series of generations. In seeking this explanation, we shall have to start from the supposition that new forms are not only created by natural selection, but are also preserved by its means. In order that any part of the body of an individual of any species may be kept at the maximum degree of development, it is necessary that all individuals possessing it in a less perfect form must be prevented from propagation—they must succumb in the struggle for existence. I will illustrate this by a special instance. In species which, like the birds of prey [193], depend for food upon the acuteness of their vision, all individuals with relatively weak eyesight must be exterminated, because they will fail in the competition for food. Such birds will perish before they have reproduced themselves, and their imperfect vision is not further transmitted. In this way the keen eyesight of birds of prey is kept up to its maximum.

But as soon as an organ becomes useless, the continued selection of individuals in which it is best developed must cease, and a process which I have termed panmixia  takes place. When this process is in operation, not only those individuals with the best-developed organs have the chance of reproducing themselves, but also those individuals in which the organs are less well-developed. Hence follows a mixture of all possible degrees of perfection, which must in the course of time result in the deterioration of the average development of the organ. Thus a species which has retired into dark caverns must necessarily come to gradually possess less developed powers of vision; for defects in the structure of the eyes, which occur in consequence of individual variability, are not eliminated by natural selection, but may be transmitted and fixed in the descendants [194]. This result is all the more likely to happen, inasmuch as other organs which are of importance for the life of the species will gain what the functionless organ loses in size and nutrition. As at each stage of retrogressive transformation individual fluctuations always occur, a continued decline from the original degree of development will inevitably, although very slowly, take place, until the last remnant finally disappears. How inconceivably slowly this process goes on is shown by the numerous cases of rudimentary organs: by the above-mentioned embryonic sixth finger of man, or by the hind limbs of whales buried beneath the surface of the body, or by their embryonic tooth-germs. I believe that the very slowness with which functionless organs gradually disappear, agrees much better with my theory than with the one which has been hitherto held. The result of the disuse of an organ is considerable, even in the course of a single individual life, and if only a small fraction of such a result were transmitted to the descendants, the organ would be necessarily reduced to a minimum, in a hundred or at any rate in a thousand generations. But how many millions of generations may have elapsed since e. g. the teeth of the whalebone whales became useless, and were replaced by whalebone! We do not know the actual number of years, but we know that the whole material of the tertiary rocks has been derived from the older strata, deposited in the sea, elevated,and has been itself largely removed by denudation, since that time.

Now if this theory as to the causes of deterioration in disused organs be correct, it follows that rudimentary organs can only occur in species with sexual reproduction, and that they cannot be formed in species which are exclusively reproduced by the parthenogenetic method: for, according to my theory, variability depends upon sexual reproduction, while the deterioration of an organ when disused, no less than its improvement when in use, depends upon variability. There are therefore two reasons which lead us to expect that organs which are no longer used will remain unreduced in species with asexual reproduction: first, because only a very slight degree of hereditary variability can be present, viz. such a degree as was transmitted from the time when sexual reproduction was first abandoned by the ancestors; and, secondly, because even these slight degrees of variability are not combined, or, in other words, because panmixia cannot occur.

And the facts seem to point in the direction required by the theory, for superfluous organs do not become rudimentary in parthenogenetic species. For example, as far as my experience goes, the receptaculum seminis  does not deteriorate, although it is, of course, altogether functionless when parthenogenesis has become established. I do not attach much importance to the fact that the Psychids and Solenobias—(genera of Lepidoptera which Siebold and Leuckart have shown to include species with parthenogenetic reproduction)—still retain the complete female sexual apparatus, because colonies containing males still occasionally occur in these species. Although the majority of colonies are now purely female, the occasional appearance of males points to the fact that the unisexuality of the majority cannot have been of very long duration. The process of transformation of the species from a bisexual into a unisexual form, only composed of females, is obviously incomplete, and is still in process of development. The case is similar with several species of Cynipidae, which reproduce by the parthenogenetic method. In these cases the occurrence of a very small proportion of males is the general rule, and is not confined to single colonies. Thus Adler [195] counted 7 males and 664 females in the common Cynips  of the rose.

In some Ostracodes, on the other hand, the males appear to be entirely wanting: at least, I have tried in vain for years to discover them in any locality or at any time of the year [196].

Cypris vidua  and Cypris reptans  are such species. Now, although the transformation of these formerly bisexual species into purely unisexual female species appears to be complete [197], yet the females still possess a large, pear-shaped receptaculum seminis, with its long spirally twisted duct, which is surrounded by a thick glandular layer. This is the more remarkable as the apparatus is very complicated in the Ostracodes, and retrogressive changes could be therefore easily detected. Furthermore among insects, in the genus Chermes  the receptaculum seminis  of the females has also remained unreduced, although the males appear to be entirely wanting, or at least have never been found, in spite of the united efforts of several acute observers [198]. The case is quite different in species which retain both sexual and parthenogenetic reproduction. Thus, the summer females of the Aphidae  have lost the receptaculum seminis ; and in these insects sexual reproduction has not ceased, but alternates regularly with parthenogenetic reproduction.

Certainly this proof of the truth of my theory as to the significance of sexual reproduction is far from settling the question: it only renders the theory highly probable. At present it is impossible to do more than this, because we do not yet possess a sufficient number of facts, for many of them could not have been sought for until after the theory had been suggested. We are here concerned with complicated phenomena, into which we cannot acquire an immediate insight, but can only attain it gradually.

But, nevertheless, I hope to have shown that the theory of natural selection is by no means incompatible with the theory of ‘the continuity of the germ-plasm;' and, further, that if we accept this latter theory, sexual reproduction appears in an entirely new light: it has received a meaning, and has to a certain extent become intelligible.

The time in which men believed that science could be advanced by the mere collection of facts has long passed away: we know that it is not necessary to accumulate a vast number of miscellaneous facts, or to make as it were a catalogue of them; but we know that it is necessary to establish facts which, when grouped together in the light of a theory, will enable us to acquire a certain degree of insight into some natural phenomenon. In order to direct our attention to those new facts which are of immediate importance, it is absolutely necessary to seek the aid of some general theory for the arrangement and grouping of those which we already possess. This has been my object in the present paper.

But it may be perhaps objected that these phenomena are far too complicated to be attacked at the present time, and that we ought to wait quietly until the simpler phenomena have been resolved into their components. It may be asked whether the trouble and labour involved in the attempt to solve such questions as heredity or the transformation of species are not likely to be wasted and useless.

It is true that we sometimes meet with such opinions, but I believe that they are based upon a misunderstanding of the method which mankind has always followed in the investigation of nature, and which must therefore be founded upon the necessary relations existing between mankind and nature.

Science has often been compared to an edifice which has been solidly built by laying stone upon stone, until it has gradually risen to greater height and perfection. This comparison holds good up to a certain point, but it leads us to easily overlook the fact that this metaphorical building does not at any point rest upon the ground, and that, at least up to the present time, it has remained floating in the air. Not a single branch of science, not even Physics itself, has commenced building from below; all branches have begun to build at greater or less heights in the air, and have then built downwards: and even Physics has not yet reached the ground, for it is still very uncertain as to the nature of matter and force. In no single group of phenomena can we begin with the investigation of ultimate causes, because at this very point our means of reasoning stop short. We cannot begin with ultimate phenomena and gradually lead up to those which are more complicated: we cannot proceed synthetically and deductively, building up the phenomena from below; but we must as a rule proceed analytically and inductively, proceeding from above downwards.

No one will dispute these statements, but they are often forgotten, as is proved by the above-mentioned objection. If we were only permitted to attack the more complicated phenomena after gaining a complete insight into the simpler ones, then all scientists would be physicists and chemists, and not until Physics and Chemistry were done with should we be permitted to proceed to the investigation of organic nature. Under these circumstances we ought not to possess now any scientific theory of medicine; for the study of pathological physiology could not be commenced until normal physiology was completely known and understood. Yet how great a debt is owing by normal to pathological physiology! This is an example which enforces the conclusion that it is not only permissible, but in the highest degree advantageous, for the different spheres of phenomena to be attacked simultaneously.

Furthermore, if we had been compelled to proceed from the simple to the complex, what would have become of the Theory of Descent, the influence of which has advanced our knowledge of Biology to an altogether immeasurable extent?

But in this often repeated criticism that we are not yet ready to attack such complicated phenomena as heredity, is hidden still another fallacy, for it is implied that facts become less certain in proportion to the complexity of their causes. But is it less certain that the egg of an eagle developes into an eagle, or that the peculiarities of the father and mother are transmitted to the child, than that a stone falls to the ground when its support is taken away? Again, is it not possible to draw a perfectly distinct and certain conclusion as to the relative quantity of the material basis of heredity, present in the germ-cells of either parent, from the fact that the father and mother possess an equal or nearly equal share in heredity? But it is really unnecessary to argue in this way: why should we do more than re-affirm that such a method of procedure in scientific investigation is the only way by which we can gradually penetrate the hidden depths of natural phenomena?

No! Biology is not obliged to wait until Physics and Chemistry are completely finished; nor have we to wait for the investigation of the phenomena of heredity until the physiology of the cell is complete. Instead of comparing the progress of science to a building, I should prefer to compare it to a mining operation, undertaken in order to open up a freely branching lode. Such a lode must not be attacked from one point alone, but from many points simultaneously. From some of these we should quickly reach the deep-seated parts of the lode, from others we should only reach its superficial parts; but from every point some knowledge of the complex tout ensemble  of the lode would be gained. And the more numerous the points of attack, the more complete would be the knowledge acquired, for valuable insight will be obtained in every place where the work is carried on with discretion and perseverance.

But discretion is indispensable for a fruitful result; or, leaving our metaphor, facts must be connected together by theories, if science is to advance. Just as theories are valueless without a firm basis of facts, so the mere collection of facts, without relation and without coherence, is utterly valueless. Science is impossible without hypotheses and theories: they are the plummets with which we test the depth of the ocean of unknown phenomena, and thus determine the future course to be pursued on our voyage of discovery. They do not give us absolute knowledge, but they afford us as much insight as it is possible for us to gain at the present time. To go on investigating without the guidance of theories, is like attempting to walk in a thick mist without a track and without a compass. We should get somewhere under these circumstances, but chance alone would determine whether we should reach a stony desert of unintelligible facts or a system of roads leading in some useful direction; and in most cases chance would decide against us.

In this sense I trust that the sign-post or compass which I offer may be accepted. Even though it should be its fate to be replaced by a better one at a later period, it will have fulfilled its object if it enables science to advance for even a short distance.

Footnotes for Essay V

176.  C. Nägeli, ‘Mechanisch-physiologische Theorie der Abstammungslehre.' München u. Leipzig, 1884.

177.  ‘Ueber die Berechtigung der Darwin'schen Theorie.' Leipzig, 1868, p. 27.

178.   l. c., Preface, p. vi.

179.  Since the above was written many other morphological peculiarities of plants have been rightly explained as adaptations. Compare, for instance, the investigations of Stahl on the means by which plants protect themselves against the attacks of snails and slugs (Jena, 1888).—A. W., 1888.

180.  l. c., pp. 117, 286.

181.  Compare the second and fourth of the preceding Essays, ‘On Heredity' and ‘The Continuity of the Germ-plasm as the Foundation of a Theory of Heredity.'

182.  Compare Rauber, ‘Homo sapiens ferus oder die Zustände der Verwilderten.' Leipzig, 1885.

183.  ‘Sitzungsberichte der baierischen Akademie der Wissenschaften,' vom 18 Nov. 1865. Compare also his ‘Mechanisch-physiologische Theorie der Abstammungslehre,' p. 102, etc.

184.  Jordan, ‘Remarques sur le fait de l'existence en société des espèces végétales affines.' Lyon, 1873.

185.  S. Hermann's ‘Handbuch der Physiologie,' Theil II; ‘Physiologie der Zeugung,' by V. Hensen.

186.  E. van Beneden, ‘Recherches sur la maturation de l'œuf, la fécondation et la division cellulaire.' Gand u. Leipzig, 1883, pp. 404 et seq.

187.  Rolph, ‘Biologische Probleme.' Leipzig, 1882.

188.  Cienkowsky, ‘Arch. f. mikr. Anat.,' ix. p. 47. 1873.

189.  Hensen, ‘Physiologie der Zeugung,' p. 139.

190.  Coalescence takes place in the so-called bud-like conjugation of Vorticellidae  and Trichodinidae, etc.

191.  Compare (1) Bardeleben, ‘Zur Entwicklung der Fusswurzel,' Sitzungsber. d. Jen. Gesellschaft, Jahrg. 1885, Feb. 6; also ‘Verhandl. d. Naturforscherversammlung zu Strassburg,' 1885, p. 203; (2) G. Baur, ‘Zur Morphologie des Carpus und Tarsus der Wirbelthiere,' Zool. Anzeiger, 1885, pp. 326, 486.

192.  In frogs the sixth toe exists in the hind legs as a rudimentary prehallux. Compare Born, Morpholog. Jahrbuch, Bd. I, 1876.

193.   I here make use of the same illustration which I employed in my first attempt to explain the effects of panmixia. Compare the second Essay ‘On Heredity.'

194.  [E. Ray Lankester has suggested (Encycl. Britann., art. ‘Zoology,' pp. 818, 819) that the blindness of cave-dwelling and deep-sea animals is also due to the fact that ‘those individuals with perfect eyes would follow the glimmer of light and eventually escape to the outer air or the shallower depths, leaving behind those with imperfect eyes to breed in the dark place. A natural selection would thus be effected.' Such a sifting process would certainly greatly quicken the rate of degeneration due to panmixia alone.—E. B. P.]

195.  Adler, ‘Zeitschrift f. wiss. Zool.,' Bd. XXXV, 1881.

196.  Compare my paper, ‘Parthenogenese bei den Ostracoden,' in ‘Zool. Anzeiger,' 1880, p. 82. Purely negative evidence, unless on an immense scale, is quite rightly considered to be of no great value in most cases. But the condition of these animals renders the accumulation of such evidence unusually easy, because the presence of males in a colony of Ostracodes can be proved by a very simple indirect test. Thus if a colony contains any males the receptacula seminis  of all mature females are filled with spermatozoa, and on the other hand we may be quite sure that males are absent, if after the examination of many mature females, no spermatozoa can be found in any of their receptacula.

197.  We cannot, however, be absolutely certain of this, for it is conceivable that males may still occur in colonies other than those examined.

198.  It has now been shown by Blochmann that males appear for a very short time towards the close of summer, as in the case of Phylloxera.—A. W., 1888.


Appendix I. Further considerations which oppose Nägeli's
explanation of transformation as due to internal causes [199].

When I describe Nägeli's theory of transformation as due to active causes lying within the organism, as a phyletic force of transformation, I do not mean to imply that it is one of those mysterious principles which, according to some writers, constitute the unconscious cause which directs the transformation of species. Nägeli's idioplasm, which changes from within itself, is conceived as a thoroughly scientific, mechanically operating principle. This cause is undoubtedly capable of theoretical conception: the only question is whether it has any real existence. According to Nägeli, the growing organic substance, the idioplasm, not only represents a perpetuum mobile  rendered possible as long as its substance continually receives from without the matter and force which are necessary for continuous growth, but it also represents a perpetuum variabile  due to the action of internal causes [200]. But this is just the doubtful point, viz., whether the structure of the idioplasm itself compels it to change gradually during the course of its growth, or whether it is not rather the external conditions which compel the ever slightly varying idioplasm to change in a certain direction by the summation of small differences. It has been shown above that we do not gain anything by adopting Nägeli's theory, because the main problem which organic nature offers for our solution, viz. adaptation, remains unsolved. Hence this theory does not explain the phenomena of nature, and I believe that there are also certain facts which are directly antagonistic to it.

If the idioplasm really possessed the power of spontaneous variability ascribed to it by Nägeli; if, as a result of its own growth, it were compelled to undergo gradual changes, and thus to produce new species, we should expect that the duration of species, genera, orders, &c. would be of approximately equal length respectively, at least in forms of equal structural complexity. The time required by the idioplasm to undergo such changes as would constitute transformation into a new species ought to be always the same at equal heights in the scale of organization, that is, with equal complexity in the molecular structure of the idioplasm. It appears to me to be a necessary consequence of Nägeli's theory that the causes of transformation lie solely in this molecular structure of the idioplasm. If nothing more than a certain amount of growth, and consequently a certain period of time during which the organism reproduces itself with a certain intensity, is required to produce a change in the idioplasm, then we must conclude that the alteration in the latter must take place when this certain amount of growth has been reached, or after this certain period has elapsed. In other words, the time during which a species exists—from its origin as a modification of some older species, until its own transformation into a new one—must be the same in species with the same degree of organization. But the facts are very far from supporting this consequence of Nägeli's theory. The duration of species is excessively variable: many arise and perish within the limits of a single geological formation, while others may be restricted to a very small part of a formation; others again may last through several formations. It must be admitted that we cannot estimate the exact position of extinct species in the scale of organization, and the differences may therefore depend upon differences of organization: or they may be explained by the supposition that certain species may have become incapable of transformation, and might, under favourable conditions, continue to exist for an indefinite period. But this reply would introduce a new hypothesis in direct antagonism to Nägeli's theory, which assumes that the variability of idioplasm takes place as the consequence of mere growth, and necessarily depends upon molecular structure. Nägeli himself asserts that the essential substance (idioplasm) of the descendants of the earliest forms of life is in a state of perpetual change, which would continue even if the series of successive generations were indefinitely prolonged [201]. Hence there can be no rest in the process of change which the idioplasm must undergo; and this is as true of each single species as it is of the organic world taken as a whole. Wecould, perhaps, find shelter in the insufficiency of our geological knowledge, but the number of ascertained facts is too great for this to be possible. Thus it is well known that the genus Nautilus  has lasted from Silurian times, through all the three geological periods, up to the present day: while all its Silurian allies (OrthocerasGomphocerasGoniatites, &c.) became extinct at a comparatively early period.

A keen and clever controversialist might still bring forward many objections against such an argument. I do not therefore place too much dependence upon the geological facts by themselves, as a disproof of the self-variability of Nägeli's idioplasm; for it must be admitted that the facts are not sufficiently complete for this purpose. For instance, in the case of Nautilus  it might be argued that we do not know anything about the fossil Cephalopods of pre-Silurian times, and that it is therefore possible that the above-mentioned allies of Nautilus  may have existed previously for as long a period as that through which Nautilus  has lived in post-Silurian time. However this may be, it will be at least conceded that the geological facts do not lend any support to Nägeli's theory, for we can see no trace of even an approximately regular succession of forms.

Appendix II. Nägeli's explanation of adaptation [202].

In order to explain adaptation Nägeli assumes that, under certain circumstances, external influences may cause slight permanent changes in the idioplasm. If then such influences act continually in the same direction during long periods of time, the changes in the idioplasm may increase to a perceptible amount, i. e. to a degree which makes itself felt in visible external characters [203]. But such changes alone could not be considered as adaptations, for the essential character of an adaptation is that it must be a purposeful change. Nägeli, however, brings forward the fact that external stimuli often produce their chief effects at that very part of the organism to which the stimuli themselves were applied. ‘If the results are detrimental, the organism attempts to defend itself against the stimulus: a confluence of nutrient fluid takes place towards the part upon which the stimulus has acted, and new tissues are formed which restore the integrity of the organism by replacing the lost structures as far as possible. Thus in plants the healthy tissues begin to grow actively around the seat of an injury, tending to close it up, and to afford protection by impenetrable layers of cork.' Purposeful reactions of this kind are certainly common in the organic world, occurring in animals as well as in plants. Thus in the human body an injury causes a rapid growth of the surrounding tissues, which leads to the closing-up of the wound; while in the Salamander even the amputated leg or tail is replaced by growth. An extreme example of these purposeful reactions is afforded by the tree-frog (Hyla ), which is of a light-green colour when seated upon a light-green leaf, but becomes dark brown when transferred to dark surroundings. Hence this animal adapts itself to the colour of its environment, and thus gains protection from its enemies.

Admitting this capability on the part of organisms to react under certain stimuli in a purposeful manner, the question remains whether such a power is a primitive original quality belonging to the essential nature of each organism. The power of changing the colour of the skin in correspondence with that of the surroundings is not very common in the animal kingdom. In the frog this power depends upon a highly complex reflex mechanism. Certain chromatophores in the skin are connected with nerves [204]which pass to the brain and are there brought into relation, by means of nerve-cells, with the nervous centres of the organ of vision. The relation is of such a kind that strong light falling upon the retina constitutes a stimulus for the production of an impulse, which is conducted, along the previously mentioned motor nerves, from the brain to the chromatophores, thus determining the contraction of these latter and the consequent appearance of a light-coloured skin. When the strong stimulus (of light) ceases, the chromatophores expand again, and the skin becomes dark. That the chromatophores do not themselves react upon the direct stimulus of light was proved by Lister [205], who showed that blind frogs do not possess the power of altering their colour in correspondence with that of their environment. It is quite obvious that in this case we are not dealing with a primary, but with a secondarily produced character; and it has yet to be proved that all the purposeful reactions mentioned by Nägeli are not similarly secondary characters or adaptations, and thus very far from being primitive qualities of the organic substance of the forms in which they occur.

I do not by any means doubt that some of the reactions witnessed in organisms do not depend upon adaptation, but such reactions are not usually purposeful. Curiously enough, Nägeli mentions the formation of galls in plants among his instances of purposeful reactions under external stimuli. I think, however, that it can hardly be maintained that the galls are of any use to the plant: on the contrary, they may even be very injurious to it. The gall is only useful to the insect which it protects and supplies with food. The recent and most excellent investigations of Adler [206] and of Beyerinck [207] have shown that the puncture made by the Cynips  in depositing its eggs is not the stimulus which produces the gall, as was formerly believed to be the case, but that such a stimulus is provided by the larva which developes from the egg. The presence of this small, actively moving, foreign body stimulates the tissue of the plant in a definite manner, always producing a result which is advantageous to the larva and not to the plant. It would be to the advantage of the latter if it killed the intruding larva, either enclosing it by woody tissue devoid of nourishment, or poisoning it by some acrid secretion, or simply crushing it by the active growth of the surrounding tissues. But nothing of the kind occurs: in fact an active growth of cells (forming the so-called ‘Blastem' of Beyerinck) takes place around the embryo, while it is still enclosed in the egg-capsule; but the growth is not such as to crush the embryo, which remains free in the cavity, the so-called larval chamber, which is formed around it. It would be out of place to discuss here the question as to how we can conceive that the plant is thus compelled to produce a growth which is at any rate indifferent and may be injurious to it; and which, moreover, is exactly adapted to the needs of its insect-enemy. But it is at all events obvious that this cannot be an example of a self-protecting reaction under a stimulus, and that therefore an organism does not always respond to external stimuli in a manner useful to itself.

But even if we could accept the suggestion that the purposeful reaction of an organism under stimulation is a primary and not a secondarily produced character, such a principle would by no means suffice for the explanation of existing adaptations. Nägeli attempts to explain certain selected cases of adaptation as the direct results of external stimuli. He looks upon the thick hairy coat of mammals in arctic regions, and the winter covering of animals in temperate regions, as a direct reaction of the skin under the influence of cold. He considers that the horns, claws, and tusks of animals have arisen directly as reactions under stimuli applied to certain parts of the surface of the body in attack and defence [208]. This interpretation is similar to that offered by Lamarck at the beginning of this century. At first sight such a suggestion appears to be plausible, for the acquisition of a thick hairy covering by the mammals of temperate regions is actually contemporaneous with the cold season of the year. But the question arises as to whether the production of a larger number of hairs at the beginning of winter is not merely another instance of a secondary character, like the assumption of a green colour by the tree-frog under the stimulus exerted by strong light.

In the case of the hairy coat it is only necessary to produce a larger number of structures such as had existed previously; but how can it have been possible for the petals of flowers, with their peculiar and complex forms, to have been developed from stamens as a direct result of the insects which visit them in order to obtain pollen and nectar? How could the creeping of these insects and the small punctures made by them constitute stimuli for the production of an increased rate of growth? And how is it possible in any way to explain, by mere increase in growth, the origin of a structure in which each part has its own distinct meaning and plays a peculiar part in attracting insects and in the process of cross-fertilization effected by them? Even if the manifold peculiarities of form could be explained in this way, how can such an explanation possibly hold for the colours of flowers? How could the white colour of flowers which open at night be explained as the direct result of the creeping of insects? How can the suggestion of such a cause offer any interpretation of the fact that flowers which open by day are tinted with various colours, or of the fact that there is often a bright or highly coloured spot which shows the way to the hidden nectary?

There are, moreover, a large number of very striking adaptations in form and colour, for which no stimulus acting directly upon the organism can be found. Can we imagine that the green caterpillar [209], plant-bug, or grasshopper, sitting among green surroundings, is thus exposed to a stimulus which directly produces the green colour in the skin? Can the walking-stick insect, which resembles a brown twig, be subject to a transforming stimulus by sitting on such branches or by looking at them? Or again, if we consider the phenomena of mimicry, how can one species of butterfly, by flying about with another species, exercise upon the latter such an influence as to render it similar to the first in appearance? In many cases of mimicry, the mimicked and the mimicking species do not even live in the same place, as we see in the moths, flies, and beetles which resemble in appearance the much-dreaded wasps.

The interpretation of adaptation is the weak part of Nägeli's theory, and it is somewhat remarkable that so acute a thinker should not have perceived this himself. One very nearly gains the impression that Nägeli does not wish to understand the theory of natural selection. He says, for instance, in speaking of the mutual adaptation observable between the proboscis, the so-called ‘tongue' of butterflies, and flowers with tubular corolla [210]:—‘Among the most remarkable and commonest adaptations observable in the forms of flowers, are the corollas with long tubes considered in relation to the long “tongues” of insects, which suck the nectar from the bottom of the long narrow tubes, and at the same time effect the cross-fertilization of the plant. Both these arrangements have been gradually developed to their present degree of complexity—the long-tubed corollas from those without tubes, and from those with short ones, the long “tongues” from short ones. Undoubtedly both have been developed at the same rate so that the length of both sets of structures has always remained the same.'

No objection can be raised against these statements, but Nägeli goes on to say:—‘But how can such a process of development be explained by the theory of natural selection, for at each stage in the process the adaptation was invariably complete. The tube of the corolla and the “tongue” must have reached, for instance, at a certain time, a length of 5 or 10 mm. If now the tube of the corolla became longer in some plants, such an alteration would have been disadvantageous because the insects would be no longer able to obtain food from them, and would therefore visit flowers with shorter tubes. Hence, according to the theory of natural selection, the longer tubes ought to have disappeared. If on the other hand the “tongue” became longer in some insects, such a change would be superfluous and should have been given up, according to the same theory, as unnecessary structural waste. The simultaneous change in the two structures must, according to the theory of natural selection, be due to the same principle as that by which Münchhausen pulled himself out of a bog by means of his own pig-tail.'

But, according to the theory of natural selection, the case appears in a very different light from that in which it is put by Nägeli. The flower and the insect do not compete for the greater length of their respective organs: all through the gradual process, the flower is the first to lengthen its corolla and the butterfly follows. Their relation is not like that between a certain species of animal and another which serves as its prey, where each strives to be the quicker, so that the speed of both is increased to the greatest possible extent in the course of generations. Nor do they stand in the same relation as that obtaining between an insectivorous bird and a certain species of butterfly which forms its principal food; in such a case two totally different characters may be continually increased up to their highest point, e.g. in the butterfly similarity to the dead and fallen leaves among which it seeks protection when pursued, in the bird keenness of sight. As long as the latter quality is still capable of increase, so long will it still be advantageous to any individual butterfly to resemble the leaf a little more completely than other individuals of the same species; for it will thus be capable of escaping those birds which possess a ratherkeener sight than others. On the other hand, a bird with rather keener sight will have the greatest chance of catching the better protected butterflies. It is only in this way that we can explain the constant production of such extraordinary similarities between insects and leaves or other parts of plants. At every stage of growth both the insect and its pursuer are completely adapted to each other; i.e. they are so far protected and so far successful respectively, as is necessary to prevent that gradual decrease in the average number of individuals which would lead to the extermination of the species [211]. But the fact that there is complete adaptation at each stage does not prevent the two species from increasing those qualities of protection and of pursuit upon which they respectively depend. So far from this being the case, they would be necessarily compelled to gradually increase these qualities so long as the physical possibility of improvement remained on both sides. As long as some birds possessed a rather keener sight than those which previously existed, so long would those butterflies possess an advantage in which the resemblance to leaf-veining was more distinct than in others. But from the moment at which the maximum keenness of eyesight attainable had been reached, at which therefore all butterflies resembled leaves so completely that even the birds with the keenest eyesight might fail to detect them when at rest,—from this very point any further improvement in the similarity to leaves would cease, because the advantage to be gained from any such improvement would cease at the same time.

Such reciprocal intensification of adaptive characters appears to me to have been one of the most important factors in the transformation of species: it must have persisted through long series of species during phylogeny: it must have affected the most diverse parts and characters in the most diverse groups of organisms.

In certain large butterflies of the Indian and African forests—Kallima paralectaK. inachis, and K. albofasciata —it has been frequently pointed out that the deceptive resemblance to a leaf is so striking that an observer who has received no hint upon the subject believes that he sees a leaf, even when he is looking at the butterfly very closely. The similarity is nevertheless incomplete; for out of sixteen specimens in the collections at Amsterdam and Leyden, I could not find a single one which had more than two lateral veins on one side of the mid-rib of the supposed leaf, or more than three upon the other side; while about six or seven veins should have been present on each side. But from two to three lateral veins are amply sufficient to produce a high degree of resemblance; in fact so much so that it is a matter for wonder as to how it has been possible for such a relatively perfect copy to have been produced; or how the sight of birds can have become so highly developed that while flying rapidly they could perceive the vein-like markings; or to state the case more accurately, that they could detect those individuals with a less number of veins than others. It is possible that the process of increase in resemblance is still proceeding in the species of the genus Kallima ; at all events, I was struck by the rather strong individual differences in the markings of the supposed leaf.

On the other hand, the cause of the increase in length of the tubular corolla and of the butterfly's ‘tongue,' lies neither in the flower nor in the butterfly, but it is to be found in those other insects which visit the flower and steal its honey without being of any assistance in cross-fertilization. It may be stated shortly, that non-tubular corollas, with the honey freely exposed—for it must be assumed the ancestral form was of this kind—gradually developed into corollas with the honey deeply concealed. The whole process was presumably first started by the flower, for the gradual withdrawal of the honey to greater depths conferred the advantage of protection from rain (Hermann Müller), while larger quantities of honey could be stored up, and this would also increase the number of insects visiting the flower and render their visits more certain. As soon as this withdrawal occurred, the mouth-parts of insects began to be subjected to a selective process whereby these organs in some of them were lengthened at the same rate as that at which the honey was withdrawn. When once the process had begun, its continuance was ensured, for as soon as flower-frequenting insects were divided into two groups with short and with long mouth-parts respectively, a further increase in the length of the corolla-tube necessarily took place in all those flowers which were especially benefited by the assured visits of a relatively small number of species of insects, viz., those flowers in which cross-fertilization was more certainly performed in this way than by the uncertain visits of a great variety of species. This would imply that a still further increase in length would take place, for it is obvious that the cross-fertilization of any flower would be more certainly performed by an insect when the number of species of plants visited by it became less; and hence the cross-fertilization would be rendered most certain when the insect became completely adapted—in size, form, character of its surface, and the manner in which it obtained the honey—to the peculiarities of the flower. Those insects which obtain honey from a great variety of flowers are sure to waste a great part of the pollen by carrying it to the flowers of many different species, while insects which can only obtain honey from a few species of plants must necessarily visit many flowers of the same species one after the other, and they would therefore more generally distribute the pollen in an effective manner.

Hence the tube of the corolla, and the ‘tongue' of the butterfly which brings about fertilization, would have continued to increase in length as long as it remained advantageous for the flower to exclude other less useful visitors, and as long as it was advantageous for the butterfly to secure the sole possession of the flower. Hence there is no competition between the flower and the butterfly which fertilizes it, but between these two on the one side, and the other would-be visitors of the flower on the other. Further details as to the advantages which the flower gains by excluding all other visitors, and the butterfly by being the only visitor of the flower, and also as to the manifold and elaborate mutual adaptations between insects and flowers, and as to the advantages and disadvantages which follow from the concealment of the honey—will be found in Hermann Müller's [212] work on the fertilization of flowers, in which all these subjects are minutely discussed, and are clearly explained in a most admirable manner.

Appendix III. Adaptations in Plants [213].

It is well known that Christian Conrad Sprengel was the first to recognise that the forms and colours of flowers are not due to chance, that they are not the mere sport of nature, and that they are not made for the enjoyment of man, but that their purpose is to attract insects for the performance of cross-fertilization. It is also well known that this discovery—which was made at the end of the last century, and which caused much excitement at that time—was completely forgotten, and was brought to light again by Charles Darwin when attacking the same problem.

In his work entitled ‘The Solution of Nature's Secret in the Structure and Fertilization of Flowers' (‘Das entdeckte Geheimniss der Natur im Bau und der Befruchtung der Blumen'), published at Berlin, in 1793, Sprengel showed, in several hundred cases, that the peculiarities in the structure and colours of flowers were calculated to attract insects, and to ensure the fertilization of the flowers by their instrumentality. But it was due to his successor in this line of investigation that the whole significance of the cross-fertilization effected by insects was made clear. Darwin [214] showed that in many cases, although not in all, the intention of nature was to avoid self-fertilization, and he showed that stronger and more numerous descendants are produced after cross-fertilization.

After Darwin, several investigators, such as Kerner, Delpino and Hildebrand, have paid further attention to the subject, but it has been especially studied in a most thorough manner by Hermann Müller [215]. He looked at the subject from more than one point of view, and showed by direct observation the species of insects which effect cross-fertilization in various species of our native flowers: he also studied the structure of insects in relation to that of flowers, and attempted to establish the mutual adaptations which exist between them. In this way he succeeded in throwing much light upon the process of transformation in many species of flowers, and in proving that certain insects, although unconsciously, are, as it were, breeders of certain forms of flowers. He not only distinguished the disagreeably smelling, generally inconspicuous flowers (‘Ekelblumen') produced by Diptera which live on putrid substances, and the flowers which are produced by butterflies; but he also distinguished the flowers bred by saw-flies, byFossoria, and by bees. He even believes that in certain cases (Viola calcarata ) he can prove that a flower which owed its original form to being bred by bees, was afterwards adapted to cross-fertilization by butterflies, when it had migrated into an Alpine region where the latter insects are far more abundant than the former.

Although there must of course be much that is hypothetical in the interpretations of the different parts of flowers offered by Hermann Müller, the majority of these explanations are certainly correct, and it is of the greatest interest to be able to recognise the adaptive character of details, even when apparently unimportant, in the structure and colours of flowers.

Sachs has offered a very convincing explanation as to the meaning of leaf-veining, and of its significance in relation to the functions of leaves [216]. He shows that the venation of a leaf is in every case exactly adapted for the fulfilment of its purpose. It has, in the first place, to conduct the nutrient fluid in both directions, and in the second place to support the thin layers of assimilating chlorophyll cells, and to stretch them out so as to expose as large a surface as possible to the light; lastly, it has to toughen the leaf as a protection against being torn. He shows in a very convincing manner that the whole diversity of leaf venation can be understood from these three principles. Here, again, we meet with purposeful arrangements in a class of structures in which it was formerly thought that there was only a chaos of accidental forms, or, as it were, the mere sport of nature with form.

Appendix IV. On the supposed transmission of acquired characters [217].

When I previously maintained that the proofs of the transmission of artificially produced diseases are inconclusive, I had in mind the only experiments which, as far as I am aware, can be adduced in favour of the transmission of acquired characters; viz. the experiments of Brown-Séquard [218] on guinea-pigs. It is well known that he produced artificial epilepsy in these animals by dividing certain parts of the central and also the peripheral nervous system. The descendants of the animals which acquired epilepsy sometimes inherited the disease of their parents.

These experiments have been since repeated by Obersteiner [219], who has described them in a very exact and entirely unprejudiced manner. The fact itself cannot be doubted: it is certain that some of the descendants of animals in which epilepsy has been artificially produced, have also themselves suffered from epilepsy in consequence of the disease of their parents. This fact may be accepted as proved, but in my opinion we have no right to conclude from it that acquired characters can be transmitted. Epilepsy is not a morphological character; it is a disease. We could only speak of the transmission of a morphological character, if a certain morphological change which was the cause of epilepsy had been produced by the nervous lesion, and if a similar change had re-appeared in the offspring, and had produced in them also the symptoms of epilepsy. But that this really occurs is utterly unproved; and is even highly improbable. It has only been proved that many descendants of artificially epileptic parents are small, weakly, and very soon die; and that others are paralysed in various parts of the body, i. e. in one or both of the posterior or anterior extremities; while others again exhibit trophic paralysis of the cornea leading to inflammation and the formation of pus. In addition to these symptoms, the descendants in very rare cases exhibit upon the application of certain stimuli to the skin, a tendency towards those tonic and clonic convulsions together with loss of consciousness which constitute the features of an epileptic attack. Out of thirty-two descendants of epileptic parents only two exhibited such symptoms, both of them being very weakly, and dying at an early age.

These experiments, although very interesting, do not enable us to assert that a distinct morphological change is transmitted to the offspring after having been artificially induced in the parents. The injury caused by the division of a nerve is not transmitted, and the part of the brain corresponding to that which was removed from the parent is not absent from the offspring. The symptoms of a disease are undoubtedly transmitted, but the cause of the disease in the offspring is the real question which requires solution. The symptoms of epilepsy are by no means invariably transmitted; they are in fact absent from the great majority of cases, and the very small proportion in which they do occur, exhibit the symptoms of other diseases in addition to those of epilepsy. The offspring are either quite healthy (thirteen out of thirty cases) or they suffer from disturbances of the nervous system, such as the above-mentioned motor and trophic paralysis,—symptoms which are not characteristic of epilepsy: however in some of the latter epilepsy is also present.

If therefore we wish to express the matter correctly we must not state that epilepsy is transmitted to the offspring, but we must express the facts in the following manner:—animals which have been rendered epileptic by artificial means, transmit to some of their offspring a tendency to suffer from various nervous diseases, viz. from motor paralysis, to a less degree from sensory, and to a high degree from trophic paralysis; in rare cases, when the symptoms of paralysis are very marked, epilepsy is also transmitted.

If we now remember that a considerable number of diseases are already known to be caused by the presence of living organisms in the body, and that these diseases may be transmitted from one organism to another in the form of germs, ought we not to conclude from the above-mentioned facts, that the symptoms are due to an unknown microbe which finds its nutritive medium in the nervous tissues, rather than to suppose that they are due to morphological changes, such as a modification of the histological or molecular structure of certain parts of the nervous system? At all events, it would be more difficult to understand the transmission of such a structural change, than the passage of a bacillus into the sperm- or germ-cell of the parent. There is no ascertained fact which supports the former assumption, but it is very probable that the transmission of syphilis, small-pox and tuberculosis [220] is to be explained by the latter method, although the bacilli have not yet been detected in the reproductive cells. Furthermore, this method of transmission has been rigidly proved in the case of the muscardinedisease of the silkworm. At all events we can understand in this way how it happened that the offspring of artificially epileptic guinea-pigs were affected with various forms of nervous disease, a fact which would be quite unintelligible if we assume the occurrence of a true hereditary transmission of a morphological character, such as a pathological change in the structure of some nervous centre.

The manner in which artificial epilepsy becomes manifest after the operation, is also in favour of the explanation offered above. In the first place epilepsy does not result from any one single injury to the nervous system, but it may follow from a variety of different injuries. Brown-Séquard produced it by removing a portion of the grey matter of the brain, and by dividing the spinal cord, although the disease also resulted from a transverse section through half of the latter organ, or from the section of its anterior or posterior columns alone, or from simply puncturing its substance. The most striking effects appeared to follow when the spinal cord was injured in the region between the eighth dorsal and the second lumbar vertebrae, although the results were sometimes also produced by the injury of other parts. Epilepsy also followed the division of the sciatic nerve, the internal popliteal, and the posterior roots of all nerves which pass to the legs. The disease never appears at once, but only after the lapse of some days or weeks, and, according to Brown-Séquard, it is impossible to conclude that the disease will not follow the operation until after six or eight weeks have passed without an epileptic attack. Obersteiner did not witness in any case the first symptoms of the disease for several days after the division of the sciatic nerve. After the operation, sensibility decreases over a certain area on the head and neck, on the same side as the injury. If the animal be pinched in this region (which is called the epileptic area, ‘zone epileptogène') it curves itself round towards the injured side, and violent scratching movements are made with the hind leg of the same side. After the lapse of several days or even weeks, these scratching movements which result from pinching in the above-mentioned area, form the beginning of a complete epileptic attack. Hence the changes immediately produced by the division of a nerve are obviously not the direct cause of epilepsy, but they only form the beginning of a pathological process which is conducted in a centripetal direction from the nerve to some centre which is apparently situated in the pons and medulla oblongata, although, according to others [221], it is placed in the cortex of the cerebrum. Nothnagel [222] considers that certain changes, the nature of which is still entirely unknown, but which may be histological or perhaps solely molecular in character, must be produced, leading to an increased irritability of the grey matter of the centres concerned.

Nothnagel thinks it possible or even probable that in those cases in which the division of nerves is followed by epilepsy, a neuritis ascendens—an inflammation passing along the nerves in a central direction—is the cause of the changes suggested by him in the epileptic centre. All our knowledge of bacteria and of the pathological processes induced by them, seems to indicate that such a neuritis ascendens, as is assumed by Nothnagel, would render important support to the hypothesis that the artificial epilepsy is due to infection. But when we further consider that the offspring of artificially epileptic animals may themselves become epileptic, although in most cases they suffer from a variety of other nervous diseases (in consequence of trophic paralysis), I hardly see how the facts can be rendered intelligible except by supposing that in these cases of what I may call traumatic epilepsy, we are dealing with an infectious disease caused by microbes which find their nutritive medium in the nervous tissues, and which bring about the transmission of the disease to the offspring by penetrating the ovum or the spermatozoon.

Obersteiner found that the offspring were more frequently diseased when the mother was epileptic, rather than the father. This is readily intelligible when we remember that the ovum contains an immensely larger amount of substance than the spermatozoon, and can therefore be more frequently infected by microbes and can contain a greater number of them.

Of course, I do not mean to assert that epilepsy always depends upon infection, or upon the presence of microbes in the nervous tissues. Westphal produced epilepsy in guinea-pigs by striking them once or twice sharply upon the head: the epileptic attack took place immediately and was afterwards repeated. It is obvious that the presence of microbes can have nothing to do with such an attack, but the shock alone must have caused morphological and functional changes in the centres of the pons and medulla oblongata, identical with those produced by microbes in the other cases. Nothnagel also distinctly expresses the opinion that epilepsy ‘does not depend upon one uniform and invariable histological change, but that the symptoms which constitute the disease may in all probability be caused by various anatomical alterations, provided that they take place in parts of the pons and medulla which are morphologically and physiologically equivalent [223].' Just as a sensory nerve produces the sensation of pain under various stimuli, such as pressure, inflammation, infection with the poison of malaria, etc., so various stimuli might cause the nervous centres concerned to develope the convulsive attack which, together with its after-effects, we call epilepsy. In Westphal's case, such a stimulus would be given by a powerful mechanical shock, in Brown-Séquard's experiments, by the penetration of microbes.

However, quite apart from the question of the validity of this suggestion, we can form no conception as to the means by which an acquired morphological change in certain nerve-cells—a change which is not anatomical, and probably not even microscopical, but purely molecular in nature—can be possibly transferred to the germ-cells: for this ought to take place in such a manner as to produce in their minute molecular structure a change which, after fertilization and development into a new individual, would lead to the reproduction of the same epileptogenic molecular structure of the nervous elements in the grey centres of the pons and medulla oblongata as was acquired by the parent. How is it possible for all this to happen? What substance could cause such a change in the resulting offspring after having been transferred to the egg or sperm-cell? Perhaps Darwin's gemmules may be suggested; but each gemmule represents a cell, while here we have to do with molecules or groups of molecules. We must therefore assume the existence of a special gemmule for each group of molecules, and thus the innumerable gemmules of Darwin's theory must be imagined as increased by many millions. But if we suppose that the theory of pangenesis is right, and that the gemmules really circulate in the body, accompanied by other gemmules from the diseased parts of the brain, and that some of these latter pass into the germ-cells of the individual,—to what strange results would the further pursuit of this idea lead? What an incomprehensible number of gemmules must meet in a single sperm- or germ-cell, if each of them is to contain a representative of every molecule or group of molecules which has formed part of the body at each period of ontogeny. And yet such is the unavoidable consequence of the supposition that acquired molecular states of certain groups of cells can be transmitted to the offspring. This supposition could only be rendered intelligible by some theory of preformation [224], such as Darwin's pangenesis; for the latter theory certainly belongs to this category. We must assume that each single part of the body at each developmental stage is, from the first, represented in the germ-cell as distinct particles of matter, which will reproduce each part of the body at its appropriate stage as their turn for development arrives.

I will only briefly indicate some of the inevitable contradictions in which we are involved by such a theory. One and the same part of the body must be represented in the germ- or sperm-cell by many groups of gemmules, each group corresponding to a different stage of development; for if each part gives off gemmules, which ultimately reproduce the part in the offspring, it is clear that special gemmules must be given off for each stage in the development of the part, in order to reproduce that identical stage. And Darwin quite logically accepts this conclusion in his provisional hypothesis of pangenesis. But the ontogeny of each part is in reality continuous, and is not composed of distinct andseparate stages. We imagine these stages as existing in the continuous course of ontogeny; for here, as in all departments of nature, we make artificial divisions in order to render possible a general conception, and to gain fixed points in the continuous changes of form which have in reality occurred. Just as we distinguish a sequence of species in the course of phylogeny, although only a gradual transition, not traversed by sharp lines of demarcation, has taken place, so also we speak of the stages of ontogeny, although we can never point out where any stage ends and another begins. To imagine that each single stage of a part is present in the germ, as a distinct group of gemmules, seems to me to be a childish idea, comparable to the belief that the skull of the young St. Laurence exists at Madrid, while the adult skull is to be found in Rome.

We are necessarily driven to such conceptions if we assume that the transmission of acquired characters takes place. A theory of preformation alone affords the possibility of an explanation: an epigenetic theory is utterly unable to render any assistance in reaching an interpretation. According to the latter theory, the germ does not contain any preformed gemmules, but it possesses, as a whole, such a chemical and molecular constitution that under certain circumstances, a second stage is produced from it. For example, the two first segmentation spheres may be regarded as such a second stage; these again possess such a constitution that a certain third stage, and no other, can arise from them, forming the four first segmentation spheres. At each of these stages the spheres produced are peculiar to a distinct species and a distinct individual. From the third stage a fourth arises, and so on, until the embryo is developed, and still later the mature animal which can reproduce itself. No one of the parts of such an animal was originally present as distinct parts in the egg from which it was developed, however minute we may imagine these parts to be. If now an inherited peculiarity shows itself in any organ of the mature animal, this will be the consequence of the preceding developmental stages, and if we were able to investigate the molecular structure of all these stages as far back as the egg-cell, we should trace back to the latter some minute difference of molecular constitution which would distinguish it from any other egg-cell of the same species, and was destined to be the cause of the subsequent appearance of the peculiarity in the mature animal. It is only by the aid of some such hypothesis that we can conceive the cause of hereditary individual differences and the tendencies towards hereditary diseases. Hereditary epilepsy would be intelligible in this way, that is, when the disease is congenital and not due to the presence of microbes, as is presumably the case with artificially induced epilepsy.

The question now arises as to whether we can conceive the communication of such traumatic and therefore acquired epilepsy to the germ-cells. This is obviously impossible under the epigenetic theory of development described above. In what way can the germ-cells be affected by molecular or histological changes in the pons varolii and medulla oblongata? Even if we assume, for the sake of argument, that the central nervous system exercises trophic influences upon the germ-cells, and that such influences may consist of something more than variations in nutritive conditions, and may even include the power of altering the molecular constitution of the germ-plasm in spite of its usual stability; even if we concede these suppositions, how is it conceivable that the changes produced would be of the exact nature and in the exact direction necessary in order to confer upon the germ-plasm the molecular structure of the first ontogenetic stage of an epileptic individual? How can the last ontogenetic stage of the ganglion cells in the pons and medulla of such an individual, stamp upon the germ-plasm in the germ-cells of the same animal—not indeed the peculiar structure of the stage itself—but such a molecular constitution as will ensure the ultimate appearance of epilepsy in the offspring? The theory of epigenesis does not admit that the parts of the full-grown individual are contained in the germ as preformed material particles, and therefore this theory cannot allow that anything is added to the germ-plasm; but in accepting the above-made supposition, we are compelled to assume that the molecular structure of the whole of the germ-plasm is changed to a slight extent.

Nägeli is quite right in maintaining that the solid protoplasm alone, as opposed to the fluid part, i.e. that part of the protoplasm which has passed into solution, can act as the bearer of hereditary tendencies. This appears to be undoubtedly proved by the fact that the amount of material provided by the male parent for the development of an embryo is in almost all animals far smaller than the amount provided by the female parent.

In Mammalia the share contributed by the father probably only forms about one hundred-billionth part of that contributed by the mother, and yet nevertheless the influence of the former in heredity is on an average equal to that exerted by the latter [225]. Now, from the point of view of epigenesis, no molecule of the brain of an epileptic animal can reach the germ-cell except in a state of solution, and therefore no direct increase in the germ-plasm can be referred to such molecules, quite apart from the fact that such addition, even if possible, could not be of any value, because the last stage of the epileptic tendency must be represented in the nerve-cells and nerve-fibres of the diseased brain, while the first stage ought to be represented in the germ-cell.

It may be safely asserted that according to the theory of epigenesis the germ-cells cannot be influenced except as regards their nutrition. Nutritive changes may be imagined to occur through the varying trophic influence of the nervous system upon the sexual organs, but the structure of the germ-plasm cannot be altered by mere nutritive changes, or at all events it cannot be altered in that distinct and definite direction which is required by the supposed transmission of acquired epilepsy.

Thus the transmission of artificially produced epilepsy can neither be explained upon the epigenetic theory, nor upon the theory of preformation; it can only be rendered intelligible if we suppose that the appearance of the disease in the offspring depends upon the introduction and presence of living germs, viz. of microbes. The supposed transmission of this artificially produced disease is the only definite instance which has been hitherto brought forward in support of the transmission of acquired characters. I believe that I have shown that such support is deceptive, not because there is any uncertainty about the fact of the transmission itself, but because it is a transmission which cannot depend upon heredity, and is in all probability due to infection.

Ever since I began to doubt the transmission of acquired characters, I have been unable to meet with a single instance which could shake my conviction. There were many instances in which hereditary transmission was clearly established, but in none of them was there any reason to suppose that the characters transmitted were really acquired. For example, Fritz Müller has recently informed me of an instance in which he believes that there can be no doubt of the transmission of acquired characters. His observations are so interesting in several respects that I will quote them here. He says in his letter, ‘Among the bastards of two species of Abutilon, in which I had never observed hexamerous flowers, there was a single plant with a few such blossoms. As these flowers are sterile with the pollen of the same plant, I was obliged to fertilize it with pollen from another plant bearing only pentamerous flowers, in order to obtain seeds from the former. For three weeks I examined all the flowers from a plant grown from such seed, finding 145 pentamerous, 103 hexamerous, and 13 heptamerous flowers. I examined similarly the flowers of another plant produced from seed obtained from pentamerous flowers from the same parent plants. There were 454 pentamerous and 6 hexamerous flowers, and hence only 1·3 per cent. of the latter kind.'

It must certainly be admitted that the large proportion of abnormal hexamerous flowers depends upon heredity in the instance first quoted; but the hexamerous condition is not an acquired character; it is merely the first appearance of a new innate character. It is not due to the reaction of the vegetable organism under some external stimulus, for it appeared in a plant exposed to conditions similar to those which acted upon the other plant which only produced the normal pentamerous flowers. It must therefore have resulted from the tendencies which were present in the germ from which the plant itself developed, either as a spontaneous change in the germ-plasm or through the combination of two parental germ-plasms—a combination which may lead to the appearance or the reality of a new character. We know that the germ-plasm of each individual is not a simple substance, but possesses a very complex composition, for it consists of a number of ancestral germ-plasms represented in very different proportions. Now, although we cannot learn anything directly about the processes of growth of the germ-plasm, and its resulting ontogenetic stages, yet we do know, chiefly from observations upon man, that the characters of ancestors appear in the offspring in very different combinations and in very different degrees of strength. This may, perhaps, be explained by assuming that in the union of parentalgerm-plasms which takes place at fertilization, the contained ancestral germ-plasms unite in different ways, and thus come to grow with different strengths. Certain ancestral germ-plasms will meet and together produce a double effect: other opposed germ-plasms will neutralize each other; and between these two extremes all intermediate conditions will occur. And these combinations will not only take place at fertilization, but also at every stage of the whole ontogenetic history, for each stage is represented by its idioplasm, which is itself composed of ancestral idioplasms.

We do not yet know enough to be able to prove in detail the manner in which new characters may arise from such a combination of different kinds of germ-plasm. And yet it appears to me that such a view, e.g. in the case of the variation of buds, is by far the most natural. There is indeed a single example in which we can, to some extent, understand how it is that a new character may arise by these means. Certain canary-birds have a tuft of feathers on the head, but if two such birds are paired, their descendants are generally bare-headed, instead of having larger tufts [226]. The formation of a tuft depends upon the fact that the feathers are scanty and in fact absent from part of the skin of the head. Now when the scanty plumage of both parents is combined in the offspring the latter is bare-headed. Hence by the combination of ancestral characters a new character (bare-headedness) is produced, and one which is hardly likely to have ever occurred in the ancestors of existing canaries.

We do not know the causes which have been in operation when a flower possesses one petal more than the usual number, any more than we can explain why it is that one star-fish has five and another six rays. We cannot unravel the details of the mysterious relationship between two parent germ-plasms, each of which is composed of a countless number of ancestral germ-plasms from the first and second back to the n th degree. But we can nevertheless maintain in a general way that such irregularities are the result of this complex struggle between the germ-plasms in the ovum and the idioplasms in the subsequent stages of the developing organism, and that they are not the result of external influences.

If, however, acquired characters are brought forward in connexion with the question of the transformation of species, the term ‘acquired' must only be applied to those characters which do not arise from within the organism, but which arise as the reaction of the organism under some external stimulus, most commonly as the consequence of the increased or diminished use of an organ or part. We have then to learn whether the altered conditions of life, by forcing an organism to adopt new habits, can by such means lead directly, and not indirectly through natural selection, to the transformation of the species; or whether the effects of increased or diminished use of certain parts, implied by the new habits, are restricted to the individual itself, and therefore powerless to effect any direct modification of the species.

Fritz Müller's observation is also interesting in another respect: it appears to controvert my views upon heredity as expressed in the theory of the continuity of the germ-plasm. If a single flower can transmit to its descendants special peculiarities which were not possessed by its ancestors, we seem to be driven to the conclusion that the ancestral germ-plasm has not passed into the flower in question, but that new germ-plasm has been formed, inasmuch as the new characters are derived from the flower itself, and not from any of its ancestors. I think, however, that the observation admits of another interpretation: a specimen of Abutilon  with many hundred flowers is not a single individual, but a colony consisting of numerous individuals which have arisen by budding from the first individual developed from the seed.

I have not hitherto considered budding in relation to my theories, but it is obvious that it is to be explained from my point of view, by supposing that the germ-plasm which passes on into a budding individual consists not only of the unchanged idioplasm of the first ontogenetic stage (germ-plasm), but of this substance altered, so far as to correspond with the altered structure of the individual which arises from it—viz. the rootless shoot which springs from the stem or branches. The alteration must be very slight, and perhaps quite insignificant, for it is possible that the differences between the secondary shoots and the primary plant may chiefly depend upon the changed conditions of development, which takes place beneath the earth in the latter case, and in the tissues of the plant in the former. Thus we may imagine that the idioplasm, when it developes into a flowering shoot, produces at the same time the germ-cells which are found in the latter. We thus approach an understanding of Fritz Müller's observation; for if the whole shoot which produces the flower arises from the same idioplasm which also forms its germ-cells, we can readily understand why the latter should contain the same hereditary tendencies which were previously expressed in the flower which produced them. The fact that variations may occur in a single shoot depends upon the changes explained above, which occur in the idioplasm during the course of its growth, as a result of the varying proportions in which the ancestral idioplasms may be contained in it.

Fritz Müller's observation affords a beautiful confirmation of this view, for if the flower itself transmitted the hexamerous condition to its germ-cells, we could not understand why some of the extremely rare hexamerous flowers were produced by the crossing of two pentamerous flowers, in the control experiment. An explanation of this fact can only be found in the assumption that the germ-plasm contained in the mother plant, during its growth and consequent distribution through all the branches of the colony, became arranged into a combination of idioplasms, which, whenever it predominated (as it did at certain places), necessarily led to the formation of hexamerous flowers. I will not consider here the question as to whether this combination is to be looked upon as an instance of reversion, or whether it represents something new. Such a question is of no importance for our present purpose; but the hexamerous flowers of the control experiment prove, in my opinion, that germ-plasm containing the requisite combination was distributed in the mother plant and also existed, but in insufficient amount, in shoots which did not produce any hexamerous flowers.

Appendix V. On the Origin of Parthenogenesis [227].

The transformation of heterogeny into pure parthenogenesis has obviously been produced by other causes as well as by those mentioned in the main part of this paper. Other and quite different circumstances have also had a share in its production. Pure parthenogenesis may be produced without the intermediate condition of heterogeny. Thus, for example, the pure and exclusive parthenogenesis with which the large Phyllopod crustacean, Apus, is reproduced at most of its habitats, has not arisen from the loss of previously existent sexual generations, but simply from the non-appearance of males, accompanied by the simultaneous acquisition of the power, on the part of the females, of producing eggs which do not require fertilization. This is proved by the fact that males occur in certain scattered colonies of this species, and sometimes they are even present in considerable numbers. But even if we were not aware of these facts, the same conclusions might nevertheless have been drawn from the fact that Apus  produces eggs of only one form—viz. resting eggs with hard shells. In every case in which parthenogenesis has been first introduced in alternation with sexual reproduction, the resting eggs are produced by the latter generations, while the parthogenetic generations produce eggs with thin shells, in which the embryo developes and hatches very rapidly. In this way parthenogenesis leads to a rapid increase of the colony. In Apus  such increase in the number of individuals is gained in an entirely different manner, viz. by the fact that all the animals become females, which produce eggs at a very early age, and continue producing them in increasing fertility for the whole of their life. In this manner an enormous number of eggs collects at the bottom of the pool inhabited by the colony, so that after it has dried up, in spite of loss from various destructive agencies, there will still remain a sufficiency of eggs to reproduce a numerous colony, as soon as the pool has filled again.

This form of parthenogenetic reproduction is especially well suited to the needs of species inhabiting small pools which entirely depend upon rain-fall, and which may disappear at any time. In these cases the time during which the colony can live is often too short to permit the production of several generations even from rapidly developing summer-eggs. Under these circumstances the pool would often suddenly dry up before the series of parthenogenetic generations had been run through, and hence before the appearance of the sexual generation and resting eggs. In all such cases the colony would be exterminated.

This consideration might lead us to think that Crustacea, such as the Daphnidae, which develope by means of heterogeny, would hardly be able to exist in small pools filled by the rain; but here also nature has met the difficulty by another adaptation. As I have shown in a previous paper [228], the heterogeny of the species of Daphnidae  which inhabit such pools is modified in such a manner, that only the first generation produced from the resting eggs consists of purely parthenogenetic females, while the second includes many sexual animals, so that resting eggs are produced and laid, and the continuance of the colony is secured a few days after it has been first founded; viz. after the appearance of the first generation.

But it is also certain that in the Daphnidae, heterogeny may pass into pure parthenogenesis by the non-appearance of the sexual generations. This seems to have taken place in certain species of Bosmina  and Chydorus, although perhaps only in those colonies of which the continuance is secured for the whole year; viz. those which inhabit lakes, water-pipes, or wells in which the water cannot freeze. In certain insects also (e. g. Rhodites rosae ) pure parthenogenesis seems to be produced in a similar manner, by the non-appearance of males.

But the utility which we may look upon as the cause of parthenogenesis is by no means so clear in all cases. Sometimes, especially in certain species of Ostracoda, its appearance seems almost like a mere caprice of nature. In this group of the Crustacea, one species may be purely parthenogenetic, while a second reproduces itself by the sexual method, and a third by an alternation of the two methods: and yet all these species may be very closely allied and may frequently live in the same locality and apparently with the same habit of life. But it must not be forgotten that it is only with the greatest difficulty that we can acquire knowledge about the details of the life of these minute forms, and that where we can only recognize the appearance of identical conditions, there may be highly important differences in nutrition, habits, enemies and the means by which they are resisted, and in the mode by which the prey is captured—circumstances which may place two species living in the same locality upon an entirely different basis of existence. It is not merely probable that this is the case; for the fact that certain species have modified their modes of reproduction is in itself a sufficient proof of the validity of the conclusions which have just been advanced.

The fact that different methods of reproduction may obtain in different colonies of the same species, although with thoroughly identical habits, may depend upon differences in the external conditions (as in Bosmina  and Chydorus  mentioned above), or upon the fact that the transition from sexual to parthenogenetic reproduction is not effected with the same ease and rapidity in all the colonies of the same species. As long as males continue to make their appearance in a colony of Apus, sexual reproduction cannot wholly disappear. Although we are unable to appreciate, with any degree of certainty, the causes by which sex is determined, we may nevertheless confidently maintain that such determining influences may be different in two widely separated colonies. As soon, however, as parthenogenesis becomes advantageous to the species, securing its existence more efficiently than sexual reproduction, it will not only be the case that the colonies which produce the fewest males will gain advantage, but within the limits of the colony itself, those females will gain an advantage which produce eggs that can develope without fertilization. When the males are only present in small numbers, it must be very uncertain whether any given female will be fertilized: if therefore the eggs of such a female required fertilization in order to develope, it is clear that there would be great danger of entire failure in this necessary condition. In other words:—as soon as any females begin to produce eggs which are capable of development without fertilization, from that very time a tendency towards the loss of sexual reproduction springs into existence. It seems, however, that the power of producing eggs which can develope without fertilization is very widely distributed among the Arthropoda.

Appendix VI. W. K. Brooks' Theory of Heredity [229].

The only theory of heredity which, at any rate in one point, agrees with my own, was brought forward two years ago by W. K. Brooks of Baltimore [230]. The point of agreement lies in the fact that Brooks also looks upon sexual reproduction as the means employed by nature in order to produce variation. The manner in which he supposes that the variability arises is, however, very different from that suggested in my theory, and our fundamental conceptions are also widely divergent. While I look upon the continuity of the germ-plasm as the foundation of my theory of heredity, and therefore believe that permanent hereditary variability can only have arisen through some direct change in the germ-plasm effected by external influences, or following from the varied combinations which are due to the mixture of two individually distinct germ-plasms at each act of fertilization, Brooks, on the other hand, bases his theory upon the transmission of acquired characters, and upon the idea which I have previously called ‘the cyclical development of the germ-plasm.'

Brooks' theory of heredity is a modification of Darwin's pangenesis, for Brooks also assumes that minute gemmules are thrown off by each cell in the body of the higher organisms; but such gemmules are not emitted always, and under all circumstances, but only when the cell is subjected to unaccustomed conditions. During the persistence of the ordinary conditions to which it is adapted, the cell continues to perform its special functions as part of the body, but as soon as the conditions of life become unfavourable and its functions are disturbed, the cell ‘throws off minute particles which are its germs or gemmules.'

These gemmules may then pass into any part of the organism; they may penetrate the ova in the ovary, or may enter into a bud, but the male germ-cells possess a special power of attracting them and of storing them up within themselves.

According to Brooks, variability arises as a consequence of the fact that each gemmule of the sperm-cell unites, during fertilization, with that part of the ovum which, in the course of development, is destined to become a cell corresponding to that from which the gemmule has been derived.

Now, when this cell developes in the offspring, it must, as a hybrid, have a tendency to vary. The ova themselves, as cells, are subject to the same laws; and the cells of the organism will continue to vary until one of the variations is made use of by natural selection. As soon as this is the case, the organism becomes, ipso facto, adapted to its conditions; and the production of gemmules ceases, and with it the manifestation of variability itself, for the cells of the organism then derive the whole of their qualities from the egg, and being no longer hybrid, have no tendency to vary. For the same reason the ova themselves will also cease to vary, and the favourable variation will be transmitted from generation to generation in a stereotyped succession, until unfavourable conditions arise, and again lead to a fresh disposition to vary.

In this way Brooks [231] attempts to mediate between Darwin and Lamarck, for he assumes, on the one hand, that external influences render the body or one of its parts variable, while, on the other hand, the nature of the successful variations is determined by natural selection. There is, however, a difference between the views of Brooks and Darwin, although not a fundamental difference. Darwin also holds that the organism becomes variable by the operation of external influences, and he further assumes that changes acquired in this way can be communicated to the germ and transmitted to the offspring. But according to his hypothesis, every part of the organism is continually throwing off gemmules which may be collected in the germ-cells of the animal, while, according to Brooks, this only takes place in those parts which are placed under unfavourable conditions or the function of which is in some way disturbed. In this manner the ingenious author attempts to diminish the incredible number of gemmules which, according to Darwin's theory, must collect in the germ-cells. At the same time he endeavours to show that those parts must always vary which are no longer well adapted to the conditions of life.

I am afraid, however, that Brooks is confounding two things which are in reality very different, and which ought necessarily to be treated separately if we wish to arrive at correct conclusions: viz., the adaptation of a part of the body to the body itself, and its adaptation to external conditions. The first of these adaptations may exist without the second. How can those parts become variable which are badly adapted to the external conditions, but are nevertheless in complete harmony with the other parts of the body? If the conditions of life of the cells which constitute the part in question must become unfavourable, in order that the gemmules which produce variation may be thrown off, it is obvious that such a result would not occur in the case mentioned above. Suppose, for example, that the spines of a hedgehog are not sufficiently long or sharply pointed to afford protection to the animal, how could such an unfavourable development afford the occasion for the throwing off of gemmules, and a resulting variability of the spines, inasmuch as the epidermic tissue in which these structures arise, remains under completely normal and favourable conditions, whatever length or sharpness the spines may attain? The conditions of the epidermis are not unfavourably affected because, as the result of short and blunt spines, the number of hedgehogs is reduced to far below the average. Or consider the case of a brown caterpillar which would gain great advantage by becoming green; what reason is there for believing that the cells of the skin are placed in unfavourable conditions, because, in consequence of the brown colour, far more caterpillars are detected by their enemies, than would have been the case if the colour were green? And the case is the same with all adaptations. Harmony between the parts of the organism is an essential condition for the existence of the individual. If it is wanting, the individual is doomed; but such harmony between any one part and all others, i. e. proper nutrition for each part, and adequate performance of its proper function, can never be disturbed by the fact that the part in question is insufficiently adapted to the outer conditions of life. According to Darwin, all the cells of the body are continually throwing off gemmules, and against such an assumption no similar objection can be raised. It can only be objected that the assumption has never been proved, and that it is extremely improbable.

A further essential difference between Darwin's theory of pangenesis and Brooks' hypothesis lies in the fact that Brooks holds that the male and female germ-cells play a different part, and that they tend to become charged with gemmules in different degrees, the egg-cell containing a far smaller number than the sperm-cell. According to Brooks the egg-cell is the conservative principle which brings about the permanent transmission of the true characters of the race or species, while he believes that the sperm-cell is the progressive principle which causes variation.

The transformation of species is therefore believed to take place, for the most part, as follows:—those parts which are placed in unfavourable conditions by the operation of external influences, and which have varied, throw off gemmules which reach the sperm-cells, and the latter by fertilization further propagate the variation. An increase of variation is produced because the gemmules which reach the egg through the sperm-cell may unite or conjugate with parts of the former which are not the exact equivalents of the cells from which the gemmules arose, but only very nearly related to them. Brooks calls this ‘hybridization,' and he concludes that, just as hybrids are more variable than pure species, so such hybridized cells are also more variable than other cells.

The author has attempted to work out the details of his theory with great ingenuity, and as far as possible to support his assumptions by facts. Moreover, it cannot be denied that there are certain facts which seem to indicate that the male germ-cell plays a different part from that taken by the female germ-cell in the formation of a new organism.

For example, it is well known that the offspring of a horse and an ass is different when the male parent is a horse from what it is when the male parent is an ass. A stallion and a female ass produce a hinny which is more like a horse, while a male ass and a mare produce a mule which is said to be more like an ass [232]. I will refrain from considering here the opinion of several authors (Darwin, Flourens, and Bechstein) that the influence of the ass is stronger in both cases, only predominating to a less extent when the ass is the female parent; and I will for the sake of brevity accept Brooks' opinion that in these cases the influence of the father is greater than that of the mother. Were this so in all cross-breeding between different species and in all cases of normal fertilization, we should be compelled to conclude that the influences of the male and female germ-plasms upon the offspring differ at any rate in strength. But this is by no means always the case, for even in horses the reverse may occur. Thus it is stated that certain female race-horses have always transmitted their own peculiarities, while others allowed those of the stallion to preponderate.

In the human species the influence of the mother preponderates quite as often as that of the father, although in many families most of the children may take after either parent. There is nevertheless hardly any large family in which all the children take after the same parent. If we now try to explain the preponderating influence of one parent by the supposition of a greater strength in hereditary power, without first inquiring after some deeper cause, I think the only conclusion warranted by the facts before us is that this power is rarely or never equal in both of the conjugating germ-cells, but that even within the same species, sometimes the male and sometimes the female is the stronger, and that the strength may even vary in the different offspring of the same individuals, as we so frequently see in human families. The egg-cells of the same mother which ripen one after the other, and also the sperm-cells of the same father, must therefore present variations in the strength of their hereditary power. It is then hardly to be wondered at that the relative hereditary power of the germ-cells in different species should vary, although we cannot as yet understand why this should be the case.

It would not be very difficult to render these facts intelligible in a general way by an appeal to physiological principles. The quantity of germ-plasm contained in a germ-cell is very minute, and together with the idioplasms of the various ontogenetic stages to which it gives rise, it must be continually increased by assimilation during the development of the organism. If now this power of assimilation varied in intensity, a relatively rapid growth of the idioplasm derived from one of the parents would ensue, and with it the preponderance of the hereditary tendencies of the parent in question. Now, it is obvious that no two cells of the same kind are entirely identical, and hence there must be differences in their powers of assimilation. Thus the varying hereditary powers of the egg-cells produced from the same ovary become explicable, and still more easily the varying powers of the germ-cells produced in the ovaries or testes of different individuals of the same species; most easily of all the differences observable in this respect between the germ-cells of different species.

Of course, this hereditary power is always relative, as may be easily proved by cross-breeding between different species and races. Thus when a fantail pigeon is crossed with a laugher, the characters of the former preponderate, but when crossed with a pouter the characters of the latter preponderate [233]. The facts afforded by cross-breeding between hybrids and one of the pure parent species, together with a consideration of the resulting degree of variability, seem to me to be even more unfavourable to Brooks' view. They appear to me to admit of an interpretation different from that brought forward by him; and when he proceeds to make use of secondary sexual characters for the purpose of his theory, I believe that his interpretation of the facts can be easily controverted. It is hardly possible to conclude that variability is due to the male parent, because the males in many species of animals are more variable, or deviate further from the original type, than the females. It is certainly true that in many species the male sex has taken the lead in processes of transformation, while the female sex has followed, but there is no difficulty in finding a better explanation of the fact than that afforded by the assumption ‘that something within the animal compels the male to lead and the female to follow in the evolution of new breeds.' Brooks has with great ingenuity brought forward certain instances which cannot be explained with perfect confidence by Darwin's theory of sexual selection, but this hardly justifies us in considering the theory to be generally insufficient, and in having recourse to a theory of heredity which is as complicated as it is improbable. The whole idea of the passage of gemmules from the modified parts of the body into the germ-cells is based upon the unproved assumption that acquired characters can be transmitted. The idea that the male germ-cell plays a different part from that of the female, in the construction of the embryo, seems to me to be untenable, especially because it conflicts with the simple observation that upon the whole human children inherit quite as much from the father as from the mother.

Footnotes for Appendices for Essay V

199.  Appendix to page 257.

200.  l. c., p. 118.

201.  l. c., p. 118.

202.  Appendix to page 258.

203.  l. c., p. 137.

204.   Compare Brücke, ‘Farbenwechsel des Chamäleon.' Wien. Sitzber. 1851. Also Leydig, ‘Die in Deutschland lebenden Saurier,' 1872.

205.  ‘Philosophical Transactions,' vol. cxlviii. 1858, pp. 627-644.

206.  Adler, ‘Beiträge zur Naturgeschichte der Cynipiden,' Deutsche entom. Zeitschr. XXI., 1877, p. 209; and by the same author, ‘Ueber den Generationswechsel der Eichen-Gallwespen,' Zeitschr. f. wiss. Zool., Bd. XXXV. 1880, p. 151.

207.  Beyerinck, ‘Beobachtungen über die ersten Entwicklungsphasen einiger Cynipidengallen,' Verhandl. d. Amsterd. Akad. d. Wiss. Bd. XXII. 1883.

208.  l. c., p. 144.

209.  [It is now known that many such caterpillars are actually modified in colour by their surroundings, but the process appears to be indirect and secondarily acquired by the operation of natural selection, like that of the change of colour in the chamaeleon, frogs, fish, etc.; although the stimulus of light acts upon the eyes of the latter animals and upon the skin of the caterpillar. See the seventh Essay (pp. 394-397) for a more detailed account.—E. B. P.]

210.  l. c., p. 150.

211.  In order to make the case as simple as possible, I assume that the insectivorous bird feeds upon a single species of insect, and that the insect is only attacked by a single species of bird.

212.  English Edition, translated by D'Arcy W. Thompson, B.A. London, 1883, p. 509 et seqq.

213.  Appendix to page 260.

214.  Ch. Darwin, ‘On the fertilization of Orchids by Insects.' London, 1877.

215.  Compare Hermann Müller, ‘Die Befruchtung der Blumen durch Insekten und die gegenseitigen Anpassungen beider.' Leipzig, 1873. See also many articles by the same author in ‘Kosmos,' and other periodicals. These later articles are included in the English translation by D'Arcy W. Thompson.

216.  ‘Lectures on the Physiology of Plants,' translated by H. Marshall Ward, Oxford, 1887, p. 47.

217.  Appendix to page 267.

218.  Brown-Séquard, ‘Researches on epilepsy; its artificial production in animals and its etiology, nature, and treatment.' Boston, 1857. Also various papers by the same author in ‘Journal de physiologie de l'homme,' Tome I and III, 1858, 1860, and in ‘Archives de physiologie normale et pathologique,' Tome I-IV, 1868-1872.

219.  ‘Oesterreichische medicinische Jahrbücher.' Jahrgang, 1875, p. 179.

220.  A direct transmission of the germs of disease through the reproductive cells has lately been rendered probable in the case of tuberculosis, for the bacilli have been found in tubercles in the lungs of an eight-months' fœtal calf, the mother being affected at the time with acute tuberculosis. However it is not impossible that infection may have arisen through the placenta. See ‘Fortschritte der Medicin,' Bd. III, 1885, p. 198.

221.  Compare Unvericht, ‘Experimentelle und klinische Untersuchungen über die Epilepsie.' Berlin, 1883. With regard to the question of hereditary transmission, the part of the brain in which the epileptic centre is placed is of no importance.

222.  Compare Ziemssen's Handbuch der spec. Pathologie und Therapie.' Bd. XII. 2. Hälfte; Artikel ‘Epilepsie und Eklampsie.' Leipzig, 1877.

223.  l. c., p. 269.

224.  It is generally known that the earlier physiologists believed in what was called the ‘evolutionary theory,' or the ‘theory of preformation.' This assumes that the germ contains, in a minute form, the whole of the fully-developed animal. All the parts of the adult are preformed in the germ, and development only consists in the growth of these parts and their more perfect arrangement. This theory was generally accepted until the middle of the last century, when Kaspar Friedrich Wolff brought forward the theory of ‘epigenesis,' which since that time has been the dominant one. This assumes that no special parts of the germ are preformations of certain parts of the fully-developed animal, and that these latter arise by a series of changes in the germ, which gradually gives rise to them. In modern times the theory of preformation has been revived in a less crude form, as is shown by the ideas of Nägeli, and by Darwin's ‘pangenesis.'—A. W., 1888.

225.  Nägeli, l. c. p. 110.

226.  See Darwin, ‘The Variation of Animals and Plants under Domestication.' 1875. Vol. I. p. 311.

227.  Appendix to page 290.

228.  Weismann, ‘Naturgeschichte der Daphnoiden,' Zeitschrift f. wiss. Zool. XXIII. 1879.

229.  Appendix to page 277.

230.  Compare W. K. Brooks, ‘The Law of Heredity, a Study of the Cause of Variation, and the Origin of living Organisms.' Baltimore, 1883.

231.  l. c., p. 82.

232.  This seems to be the general opinion (see the quotation from Huxley in Brooks' ‘Heredity,' p. 127); but I rather doubt whether there is such a constant difference between mules and hinnies. Furthermore, I cannot accept the opinion that mules always resemble the ass more than the horse. I have seen many mules which bore a much stronger likeness to the latter. I believe that it is at present impossible to decide whether there is a constant difference between mules and hinnies, because the latter are very rarely seen, and because mules are extremely variable. I attempted to decide the question last winter by a careful study of the Italian mules, but I could not come across a single hinny. These hybrids are very rarely produced, because it is believed that they are extremely obstinate and bad-tempered. I afterwards saw two true hinnies at Professor Kühn's Agricultural Institute at Halle. These hinnies by no means answered to the popular opinion, for they were quite tractable and good-tempered. They looked rather more like horses than asses, although they resembled the latter in size. In this case it was quite certain that one parent was a stallion and the other a female ass.—A. W. 1889.

233.  Darwin, ‘Variation of Animals and Plants under Domestication,' 1875, Vol. II. p. 41.